Difference between revisions of "2007 USAMO Problems/Problem 1"
(→Solution 3) |
(→Solution 1) |
||
Line 8: | Line 8: | ||
=== Solution 1 === | === Solution 1 === | ||
− | + | Let <math>S_k = a_1 + a_2 + ... + a_k</math> and <math>b_k = \frac{S_k}{k}</math>. Thus, because <math>S_{k+1} = S_k + a_{k+1}</math>, | |
<div style="text-align:center;"><math>b_{k+1} = \frac{b_k \cdot k + a_{k+1}}{k+1} = \left(\frac{k}{k+1}\right) \cdot b_k + \frac{a_{k+1}}{k+1}</math></div> | <div style="text-align:center;"><math>b_{k+1} = \frac{b_k \cdot k + a_{k+1}}{k+1} = \left(\frac{k}{k+1}\right) \cdot b_k + \frac{a_{k+1}}{k+1}</math></div> |
Revision as of 11:34, 7 June 2014
Problem
Let be a positive integer. Define a sequence by setting and, for each , letting be the unique integer in the range for which is divisible by . For instance, when the obtained sequence is . Prove that for any the sequence eventually becomes constant.
Solution
Solution 1
Let and . Thus, because ,
, and by definition, . Thus, . Also, both are integers, so . As the s form a non-increasing sequence of positive integers, they must eventually become constant.
Therefore, for some sufficiently large value of . Then , so eventually the sequence becomes constant.
Solution 2
Let . Since , we have that .
Thus, .
Since , for some integer , we can keep adding to satisfy the conditions, provided that because .
Because , the sequence must eventually become constant.
Solution 3
Define , and . By the problem hypothesis, is an integer valued sequence.
Lemma: The exists a such that .
Proof: Choose any such that . Then: as desired.
Let k be the smallest k such that . Then , and . To make an integer, must be divisible by . Thus, because is divisible by , , and, because , . Then as well. Repeating the same process using instead of gives , and an easy induction can prove that for all , . Thus, becomes a constant function for arbitrarily large values of k.
See also
2007 USAMO (Problems • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.