Difference between revisions of "2007 USAMO Problems/Problem 1"
(→Solution 3) |
m (→Solution 1: Fix capitalization.) |
||
Line 14: | Line 14: | ||
<math>\frac{k}{k+1} < 1</math>, and by definition, <math>\frac{a_{k+1}}{k+1} < 1</math>. Thus, <math>b_{k+1} < b_k + 1</math>. Also, both <math>b_k,\ b_{k+1}</math> are integers, so <math>b_{k+1} \le b_k</math>. As the <math>b_k</math>s form a [[non-increasing]] sequence of positive integers, they must eventually become constant. | <math>\frac{k}{k+1} < 1</math>, and by definition, <math>\frac{a_{k+1}}{k+1} < 1</math>. Thus, <math>b_{k+1} < b_k + 1</math>. Also, both <math>b_k,\ b_{k+1}</math> are integers, so <math>b_{k+1} \le b_k</math>. As the <math>b_k</math>s form a [[non-increasing]] sequence of positive integers, they must eventually become constant. | ||
− | Therefore, <math>b_k = b_{k+1}</math> for some sufficiently large value of <math>k</math>. Then <math>a_{k+1} = | + | Therefore, <math>b_k = b_{k+1}</math> for some sufficiently large value of <math>k</math>. Then <math>a_{k+1} = S_{k+1} - S_k = b_k(k + 1) - b_k(k) = b_k</math>, so eventually the sequence <math>a_k</math> becomes constant. |
=== Solution 2 === | === Solution 2 === |
Revision as of 16:38, 10 June 2014
Problem
Let be a positive integer. Define a sequence by setting
and, for each
, letting
be the unique integer in the range
for which
is divisible by
. For instance, when
the obtained sequence is
. Prove that for any
the sequence
eventually becomes constant.
Solution
Solution 1
Let and
. Thus, because
,

, and by definition,
. Thus,
. Also, both
are integers, so
. As the
s form a non-increasing sequence of positive integers, they must eventually become constant.
Therefore, for some sufficiently large value of
. Then
, so eventually the sequence
becomes constant.
Solution 2
Let . Since
, we have that
.
Thus, .
Since , for some integer
, we can keep adding
to satisfy the conditions, provided that
because
.
Because , the sequence must eventually become constant.
Solution 3
Define , and
. By the problem hypothesis,
is an integer valued sequence.
Lemma: The exists a such that
.
Proof: Choose any such that
. Then:
as desired.
Let k be the smallest k such that . Then
, and
. To make
an integer,
must be divisible by
. Thus, because
is divisible by
,
, and, because
,
. Then
as well. Repeating the same process using
instead of
gives
, and an easy induction can prove that for all
,
. Thus,
becomes a constant function for arbitrarily large values of k.
Note: This solution is a formalization of the second solution. Also, the lemma could have been simplified if I chose k = n, which is exactly the second solution's thought process.
See also
2007 USAMO (Problems • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.