Difference between revisions of "1966 AHSME Problems/Problem 12"
(Created page with "== Problem == The number of real values of <math>x</math> which satisfy the equation <cmath>(2^{6x+3})(4^{3x+6})=8^{4x+5}</cmath> is: <math>\text{(A) zero} \qquad \text{(B) on...") |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The number of real values of <math>x</math> | + | The number of real values of <math>x</math> that satisfy the equation <cmath>(2^{6x+3})(4^{3x+6})=8^{4x+5}</cmath> is: |
<math>\text{(A) zero} \qquad \text{(B) one} \qquad \text{(C) two} \qquad \text{(D) three} \qquad \text{(E) greater than 3}</math> | <math>\text{(A) zero} \qquad \text{(B) one} \qquad \text{(C) two} \qquad \text{(D) three} \qquad \text{(E) greater than 3}</math> |
Revision as of 21:35, 14 September 2014
Problem
The number of real values of that satisfy the equation is:
Solution
See also
1966 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
[[Category:]]
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.