Difference between revisions of "1993 AHSME Problems/Problem 21"
Line 1: | Line 1: | ||
− | + | == Problem == | |
− | (A) 16 | + | Let <math>a_1,a_2,\cdots,a_k</math> be a finite arithmetic sequence with <math>a_4 +a_7+a_{10} = 17</math> and <math>a_4+a_5+\cdots+a_{13} +a_{14} = 77</math>. |
+ | |||
+ | If <math>a_k = 13</math>, then <math>k =</math> | ||
+ | |||
+ | <math>\text{(A) } 16\quad | ||
+ | \text{(B) } 18\quad | ||
+ | \text{(C) } 20\quad | ||
+ | \text{(D) } 22\quad | ||
+ | \text{(E) } 24</math> | ||
+ | |||
+ | == Solution == | ||
+ | <math>\fbox{B}</math> | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1993|num-b=20|num-a=22}} | ||
+ | |||
+ | [[Category: Intermediate Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 00:47, 26 September 2014
Problem
Let be a finite arithmetic sequence with and .
If , then
Solution
See also
1993 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.