Difference between revisions of "2007 AMC 12B Problems/Problem 23"

(Solution)
(Solution #2)
Line 34: Line 34:
  
 
We are given <math>[ABC] = 3p = 6s \Rightarrow rs = 6s \Rightarrow r = 6</math>.
 
We are given <math>[ABC] = 3p = 6s \Rightarrow rs = 6s \Rightarrow r = 6</math>.
 +
 +
\begin{triangle}[thick]
 +
\draw(0,0) -- (90:2cm) node[midway,left]{<math>opposite leg</math>} -- (0:4cm) node[midway,above right]{<math>hypotenuse</math>} -- (0,0) node[midway,below]{<math>adjacent leg</math>};
 +
\draw[fill=lightgray, thick] (0,0) -- (0:0.8cm) arc (0:90:0.8cm) node at (45:0.5cm) {<math>\gamma</math>} -- cycle;
 +
\end{triangle}
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2007|ab=B|num-b=22|num-a=24}}
 
{{AMC12 box|year=2007|ab=B|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:45, 29 November 2014

Problem 23

How many non-congruent right triangles with positive integer leg lengths have areas that are numerically equal to $3$ times their perimeters?

$\mathrm {(A)} 6\qquad \mathrm {(B)} 7\qquad \mathrm {(C)} 8\qquad \mathrm {(D)} 10\qquad \mathrm {(E)} 12$

Solution

Let $a$ and $b$ be the two legs of the triangle.

We have $\frac{1}{2}ab = 3(a+b+c)$.

Then $ab=6\cdot (a+b+\sqrt {a^2 + b^2})$.

We can complete the square under the root, and we get, $ab=6\cdot (a+b+\sqrt {(a+b)^2 - 2ab})$.

Let $ab=p$ and $a+b=s$, we have $p=6\cdot (s+ \sqrt {s^2 - 2p})$.

After rearranging, squaring both sides, and simplifying, we have $p=12s-72$.


Putting back $a$ and $b$, and after factoring using $SFFT$, we've got $(a-12)\cdot (b-12)=72$.


Factoring 72, we get 6 pairs of $a$ and $b$


$(13, 84), (14, 48), (15, 36), (16, 30), (18, 24), (20, 21).$


And this gives us $6$ solutions $\Rightarrow \mathrm{(A)}$.

Solution #2

We will proceed by using the fact that $[ABC] = r\cdot s$, where $r$ is the radius of the incircle and $s$ is the semiperimeter ($s = \frac{p}{2}$).

We are given $[ABC] = 3p = 6s \Rightarrow rs = 6s \Rightarrow r = 6$.

\begin{triangle}[thick] \draw(0,0) -- (90:2cm) node[midway,left]{$opposite leg$} -- (0:4cm) node[midway,above right]{$hypotenuse$} -- (0,0) node[midway,below]{$adjacent leg$}; \draw[fill=lightgray, thick] (0,0) -- (0:0.8cm) arc (0:90:0.8cm) node at (45:0.5cm) {$\gamma$} -- cycle; \end{triangle}

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png