Difference between revisions of "2015 AMC 10A Problems/Problem 19"
(→Solution) |
(→Solution) |
||
Line 13: | Line 13: | ||
Because the side lengths of a <math>30-60-90</math> right triangle are in ratio <math>a:a\sqrt{3}:2a</math> and <math>AF</math> + <math>FC = 5</math>, <math>DF = \frac{5 - AF}{\sqrt{3}}</math>. | Because the side lengths of a <math>30-60-90</math> right triangle are in ratio <math>a:a\sqrt{3}:2a</math> and <math>AF</math> + <math>FC = 5</math>, <math>DF = \frac{5 - AF}{\sqrt{3}}</math>. | ||
− | Setting the two equations for <math>DF</math> equal | + | Setting the two equations for <math>DF</math> equal to each other, <math>AF = \frac{5 - AF}{\sqrt{3}}</math>. |
Solving gives <math>AF = DF = \frac{5\sqrt{3} - 5}{2}</math>. | Solving gives <math>AF = DF = \frac{5\sqrt{3} - 5}{2}</math>. |
Revision as of 17:51, 4 February 2015
Problem
The isosceles right triangle has right angle at and area . The rays trisecting intersect at and . What is the area of ?
Solution
can be split into a right triangle and a right triangle by dropping a perpendicular from to side . Let be where that perpendicular intersects .
Because the side lengths of a right triangle are in ratio , .
Because the side lengths of a right triangle are in ratio and + , .
Setting the two equations for equal to each other, .
Solving gives .
The area of .
is congruent to , so their areas are equal.
A triangle's area can be written as the sum of the figures that make it up, so .
.
Solving gives , so the answer is .