Difference between revisions of "2014 AMC 12B Problems/Problem 12"
m |
Pi over two (talk | contribs) (→Problem) |
||
Line 3: | Line 3: | ||
A set S consists of triangles whose sides have integer lengths less than 5, and no two elements of S are congruent or similar. What is the largest number of elements that S can have? | A set S consists of triangles whose sides have integer lengths less than 5, and no two elements of S are congruent or similar. What is the largest number of elements that S can have? | ||
− | <math>\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D) | + | <math>\textbf{(A)}\ 8\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 12</math> |
==Solution== | ==Solution== |
Latest revision as of 09:13, 3 March 2015
Problem
A set S consists of triangles whose sides have integer lengths less than 5, and no two elements of S are congruent or similar. What is the largest number of elements that S can have?
Solution
Define to be the set of all integral triples such that , , and . Now we enumerate the elements of :
It should be clear that is simply minus the larger "duplicates" (e.g. is a larger duplicate of ). Since is and the number of higher duplicates is , the answer is or .
See also
2014 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.