Difference between revisions of "2015 AMC 12B Problems/Problem 10"

(Problem)
(Problem)
Line 2: Line 2:
 
How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?
 
How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?
  
<math>\textbf{(A)}\; ? \qquad\textbf{(B)}\; ? \qquad\textbf{(C)}\; ? \qquad\textbf{(D)}\; ? \qquad\textbf{(E)}\; ?</math>
+
<math>\textbf{(A)}\; 3 \qquad\textbf{(B)}\; 4 \qquad\textbf{(C)}\; 5 \qquad\textbf{(D)}\; 6 \qquad\textbf{(E)}\; 7</math>
  
 
==Solution==
 
==Solution==

Revision as of 19:59, 3 March 2015

Problem

How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?

$\textbf{(A)}\; 3 \qquad\textbf{(B)}\; 4 \qquad\textbf{(C)}\; 5 \qquad\textbf{(D)}\; 6 \qquad\textbf{(E)}\; 7$

Solution

See Also

2015 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png