Difference between revisions of "2015 AMC 12B Problems/Problem 23"

(Problem)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
 +
The surface area is <math>2(ab+bc+ca)</math>, the volumn is <math>abc</math>, so <math>2(ab+bc+ca)=abc</math>.
  
 +
Divide both sides by <math>2abc</math>, we get that <cmath>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}.</cmath>
 +
 +
First consider the bound of the variable <math>a</math>. Since <math>\frac{1}{a}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2},</math> we have <math>a>2</math>, or <math>a\geqslant3</math>.
 +
 +
Also note that <math>c\geqslant b\geqslant a>0</math>, we have <math>\frac{1}{a}>\frac{1}{b}>\frac{1}{c}</math>.
 +
Thus, <math>\frac{1}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geqslant \frac{3}{a}</math>, so <math>a\leqslant6</math>.
 +
 +
So we have <math>a=3, 4, 5</math> or <math>6</math>.
 +
 +
Before the casework, let's consider the possible range for <math>b</math> if <math>\frac{1}{b}+\frac{1}{c}=k>0</math>.
 +
 +
From <math>\frac{1}{b}<k</math>, we have <math>b>\frac{1}{k}</math>. From <math>\frac{2}{b}\geqslant\frac{1}{b}+\frac{1}{c}=k</math>, we have <math>b\leqslant\frac{2}{k}</math>. Thus <math>\frac{1}{k}<b\leqslant\frac{2}{k}</math>
 +
 +
When <math>a=3</math>, <math>\frac{1}{b}+\frac{1}{c}=\frac{1}{6}</math>, so <math>b=7, 8, \cdots, 12</math>. The solutions we find are <math>(a, b, c)=(3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15), (3, 12, 12)</math>, for a total of <math>5</math> solutions.
 +
 +
When <math>a=4</math>, <math>\frac{1}{b}+\frac{1}{c}=\frac{1}{4}</math>, so <math>b=5, 6, 7, 8</math>. The solutions we find are <math>(a, b, c)=(4, 5, 20), (4, 6, 12), (4, 8, 8)</math>, for a total of <math>3</math> solutions.
 +
 +
When <math>a=5</math>, <math>\frac{1}{b}+\frac{1}{c}=\frac{3}{10}</math>, so <math>b=5, 6</math>. The only solution in this case is <math>(a, b, c)=(5, 5, 10)</math>.
 +
 +
When <math>a=6</math>, <math>b</math> is forced to be <math>6</math>, and thus <math>(a, b, c)=(6, 6, 6)</math>.
 +
 +
Thus, there are 11 solutions
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2015|ab=B|num-a=24|num-b=22}}
 
{{AMC12 box|year=2015|ab=B|num-a=24|num-b=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:33, 3 March 2015

Problem

A rectangular box measures $a \times b \times c$, where $a$, $b$, and $c$ are integers and $1\leq a \leq b \leq c$. The volume and the surface area of the box are numerically equal. How many ordered triples $(a,b,c)$ are possible?

$\textbf{(A)}\; 4 \qquad\textbf{(B)}\; 10 \qquad\textbf{(C)}\; 12 \qquad\textbf{(D)}\; 21 \qquad\textbf{(E)}\; 26$

Solution

The surface area is $2(ab+bc+ca)$, the volumn is $abc$, so $2(ab+bc+ca)=abc$.

Divide both sides by $2abc$, we get that \[\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}.\]

First consider the bound of the variable $a$. Since $\frac{1}{a}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2},$ we have $a>2$, or $a\geqslant3$.

Also note that $c\geqslant b\geqslant a>0$, we have $\frac{1}{a}>\frac{1}{b}>\frac{1}{c}$. Thus, $\frac{1}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geqslant \frac{3}{a}$, so $a\leqslant6$.

So we have $a=3, 4, 5$ or $6$.

Before the casework, let's consider the possible range for $b$ if $\frac{1}{b}+\frac{1}{c}=k>0$.

From $\frac{1}{b}<k$, we have $b>\frac{1}{k}$. From $\frac{2}{b}\geqslant\frac{1}{b}+\frac{1}{c}=k$, we have $b\leqslant\frac{2}{k}$. Thus $\frac{1}{k}<b\leqslant\frac{2}{k}$

When $a=3$, $\frac{1}{b}+\frac{1}{c}=\frac{1}{6}$, so $b=7, 8, \cdots, 12$. The solutions we find are $(a, b, c)=(3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15), (3, 12, 12)$, for a total of $5$ solutions.

When $a=4$, $\frac{1}{b}+\frac{1}{c}=\frac{1}{4}$, so $b=5, 6, 7, 8$. The solutions we find are $(a, b, c)=(4, 5, 20), (4, 6, 12), (4, 8, 8)$, for a total of $3$ solutions.

When $a=5$, $\frac{1}{b}+\frac{1}{c}=\frac{3}{10}$, so $b=5, 6$. The only solution in this case is $(a, b, c)=(5, 5, 10)$.

When $a=6$, $b$ is forced to be $6$, and thus $(a, b, c)=(6, 6, 6)$.

Thus, there are 11 solutions

See Also

2015 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png