Difference between revisions of "2015 AIME I Problems"

(Problem 7)
(Problem 8)
Line 36: Line 36:
 
==Problem 8==
 
==Problem 8==
 
For positive integer <math>n</math>, let <math>s(n)</math> denote the sum of the digits of <math>n</math>.  Find the smallest positive integer satisfying <math>s(n) = s(n+864) = 20</math>.
 
For positive integer <math>n</math>, let <math>s(n)</math> denote the sum of the digits of <math>n</math>.  Find the smallest positive integer satisfying <math>s(n) = s(n+864) = 20</math>.
 +
 +
[[2015 AIME I Problems/Problem 8|Solution]]
  
 
==Problem 9==
 
==Problem 9==

Revision as of 17:11, 20 March 2015

Problem 1

The expressions $A$ = $1 \times 2 + 3 \times 4 + 5 \times 6 + \cdots + 37 \times 38 + 39$ and $B$ = $1 + 2 \times 3 + 4 \times 5 + \cdots + 36 \times 37 + 38 \times 39$ are obtained by writing multiplication and addition operators in an alternating pattern between successive integers. Find the positive difference between integers $A$ and $B$.

Solution

Problem 2

The nine delegates to the Economic Cooperation Conference include $2$ officials from Mexico, $3$ officials from Canada, and $4$ officials from the United States. During the opening session, three of the delegates fall asleep. Assuming that the three sleepers were determined randomly, the probability that exactly two of the sleepers are from the same country is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Solution

Problem 3

There is a prime number $p$ such that $16p+1$ is the cube of a positive integer. Find $p$.

Solution

Problem 4

Solution

Problem 5

In a drawer Sandy has $5$ pairs of socks, each pair a different color. On Monday Sandy selects two individual socks at random from the $10$ socks in the drawer. On Tuesday Sandy selects $2$ of the remaining $8$ socks at random and on Wednesday two of the remaining $6$ socks at random. The probability that Wednesday is the first day Sandy selects matching socks is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, Find $m+n$.

Solution

Problem 6

Solution

Problem 7

In the diagram below, $ABCD$ is a square. Point $E$ is the midpoint of $\overline{AD}$. Points $F$ and $G$ lie on $\overline{CE}$, and $H$ and $J$ lie on $\overline{AB}$ and $\overline{BC}$, respectively, so that $FGHJ$ is a square. Points $K$ and $L$ lie on $\overline{GH}$, and $M$ and $N$ lie on $\overline{AD}$ and $\overline{AB}$, respectively, so that $KLMN$ is a square. The area of $KLMN$ is 99. Find the area of $FGHJ$.

INSERT DIAGRAM HERE

Solution

Problem 8

For positive integer $n$, let $s(n)$ denote the sum of the digits of $n$. Find the smallest positive integer satisfying $s(n) = s(n+864) = 20$.

Solution

Problem 9

Problem 10

Problem 11

Problem 12

Consider all 1000-element subsets of the set {1, 2, 3, ... , 2015}. From each such subset choose the least element. The arithmetic mean of all of these least elements is $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p + q$.

Problem 13

Problem 14

Problem 15

A block of wood has the shape of a right circular cylinder with radius $6$ and height $8$, and its entire surface has been painted blue. Points $A$ and $B$ are chosen on the edge of one of the circular faces of the cylinder so that $\overarc{AB}$ on that face measures $120^\text{o}$. The block is then sliced in half along the plane that passes through point $A$, point $B$, and the center of the cylinder, revealing a flat, unpainted face on each half. The area of one of these unpainted faces is $a\cdot\pi + b\sqrt{c}$, where $a$, $b$, and $c$ are integers and $c$ is not divisible by the square of any prime. Find $a+b+c$.