Difference between revisions of "2015 AIME I Problems/Problem 11"
m (→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</math> and <math>\angle C</math>. Suppose <math>BI=8</math>. Find the smallest possible perimeter of <math>\triangle ABC</math>. | Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</math> and <math>\angle C</math>. Suppose <math>BI=8</math>. Find the smallest possible perimeter of <math>\triangle ABC</math>. | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | Let <math>D</math> be the midpoint of <math>\overline{BC}</math>. Then by SAS Congruence, <math>\triangle ABD \cong \triangle ACD</math>, so <math>\angle ADB = \angle ADC = 90^o</math>. | ||
+ | |||
+ | Now let <math>BD=x</math>, <math>AB=y</math>, and <math>\angle IBD = \dfrac{\angle ABD}{2} = \theta</math>. | ||
+ | |||
+ | Then <math>\mathrm{cos}{(\theta)} = \dfrac{x}{8}</math> | ||
+ | |||
+ | and <math>\mathrm{cos}{(2\theta)} = \dfrac{x}{y} = 2\mathrm{cos^2}{(\theta)} - 1 = \dfrac{x^2-32}{32} \Rightarrow 32x = y(x^2-32)</math>. | ||
+ | |||
+ | Since <math>x,y>0</math>, <math>x^2-32</math> must be positive, so <math>x > 5.5</math>. | ||
+ | |||
+ | Additionally, since <math>\triangle IBD</math> is a right triangle with hypotenuse <math>\overline{IB}</math> of length <math>8</math>, <math>BD=x < 8</math>. | ||
+ | |||
+ | Therefore, given that <math>BC=2x</math> is an integer, the only possible values for <math>x</math> are <math>6</math>, <math>6.5</math>, <math>7</math>, and <math>7.5</math>. | ||
+ | |||
+ | However, only one of these values, <math>x=6</math> yields an integral value for <math>AB=y</math>, so we conclude that <math>x=6</math> and <math>y=\dfrac{32(6)}{(6)^2-32}=48</math>. | ||
+ | |||
+ | Thus the perimeter of <math>\triangle ABC</math> must be <math>2(x+y) = \boxed{108}</math>. | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2015|n=I|num-b=10|num-a=12}} | {{AIME box|year=2015|n=I|num-b=10|num-a=12}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:12, 20 March 2015
Problem
Triangle has positive integer side lengths with . Let be the intersection of the bisectors of and . Suppose . Find the smallest possible perimeter of .
Solution
Let be the midpoint of . Then by SAS Congruence, , so .
Now let , , and .
Then
and .
Since , must be positive, so .
Additionally, since is a right triangle with hypotenuse of length , .
Therefore, given that is an integer, the only possible values for are , , , and .
However, only one of these values, yields an integral value for , so we conclude that and .
Thus the perimeter of must be .
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.