Difference between revisions of "2015 AMC 12A Problems/Problem 10"

(Created page with "==Problem== Integers <math>x</math> and <math>y</math> with <math>x>y>0</math> satisfy <math>x+y+xy=80</math>. What is <math>x</math>? <math> \textbf{(A)}\ 8 \qquad\textbf{(B)}...")
 
Line 3: Line 3:
 
Integers <math>x</math> and <math>y</math> with <math>x>y>0</math> satisfy <math>x+y+xy=80</math>. What is <math>x</math>?
 
Integers <math>x</math> and <math>y</math> with <math>x>y>0</math> satisfy <math>x+y+xy=80</math>. What is <math>x</math>?
  
<math> \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}}\ 18 \qquad\textbf{(E)}\ 26</math>
+
<math> \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 26</math>
  
 
==Solution==
 
==Solution==

Revision as of 12:22, 29 March 2015

Problem

Integers $x$ and $y$ with $x>y>0$ satisfy $x+y+xy=80$. What is $x$?

$\textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 26$

Solution

Use SFFT to get $(x+1)(y+1)=81$. The terms $(x+1)$ and $(y+1)$ must be factors of $81$, which include $1, 3, 9, 27, 81$. Because $x > y$, $x+1$ is equal to $27$ or $81$. But if $x+1=81$, then $y=0$ and so $x=\boxed{\textbf{(E)}\ 26}$.

See Also

2015 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions