Difference between revisions of "2004 IMO Problems/Problem 1"
(Created page with "== Problem == Let <math>ABC</math> be an acute-angled triangle with <math>AB\neq AC</math>. The circle with diameter <math>BC</math> intersects the sides <math>AB</math> and <...") |
m (→Solution) |
||
Line 21: | Line 21: | ||
dot(A); dot(B); dot(C); dot(O); dot(K); dot(M); dot(N); dot(R); dot(D); | dot(A); dot(B); dot(C); dot(O); dot(K); dot(M); dot(N); dot(R); dot(D); | ||
label("$A$",A,N); label("$B$",B,SE); label("$O$",O,SE); label("$K$",(1.38,-0.1)); label("$C$",C,SW); label("$M$",M,NE); label("$N$",(0.24,1.13)); label("$R$",(1.3,0.59)); | label("$A$",A,N); label("$B$",B,SE); label("$O$",O,SE); label("$K$",(1.38,-0.1)); label("$C$",C,SW); label("$M$",M,NE); label("$N$",(0.24,1.13)); label("$R$",(1.3,0.59)); | ||
− | draw(anglemark(R,N,M),blue); draw(anglemark(N,M,R),blue); draw(anglemark(N,A,R),blue); draw(anglemark(R,A,M),blue); draw(anglemark(O,C,N),green); draw(anglemark(C,N,O),green); draw(anglemark(A,M,N),green); draw(anglemark(M,N,A),red); draw(anglemark(M,B,O),red); draw(anglemark(O,M,B),red); draw(anglemark(O,N,R),yellow); draw(anglemark(R,M,O),yellow); | + | markscalefactor=0.025; draw(anglemark(R,N,M),blue); draw(anglemark(N,M,R),blue); draw(anglemark(N,A,R),blue); draw(anglemark(R,A,M),blue); draw(anglemark(O,C,N),green); draw(anglemark(C,N,O),green); draw(anglemark(A,M,N),green); draw(anglemark(M,N,A),red); draw(anglemark(M,B,O),red); draw(anglemark(O,M,B),red); draw(anglemark(O,N,R),yellow); draw(anglemark(R,M,O),yellow); markscalefactor=0.01; draw(rightanglemark(N,(1.305,1.195),O)); |
</asy> | </asy> | ||
Revision as of 23:06, 8 September 2015
Problem
Let be an acute-angled triangle with
. The circle with diameter
intersects the sides
and
at
and
respectively. Denote by
the midpoint of the side
. The bisectors of the angles
and
intersect at
. Prove that the circumcircles of the triangles
and
have a common point lying on the side
.
Solution
Let ,
, and
. Call
the circle with diameter
and
the circumcircle of
.
Our ultimate goal is to show that . To show why this solves the problem, assume this statement holds true. Call
the intersection point of the circumcircle of
with side
. Then,
, and
. Since
,
, implying
also lies on the circumcircle of
, thereby solving the problem.
We now prove that . Note that
and
are radii of
, so
is isosceles. The bisector of
is thus the perpendicular bisector of
. Since
lies on the bisector of
,
. Angle computations yield that
from
and from
.
The bisector of hits
at the midpoint of the arc
not containing
. This point must lie on the perpendicular bisector of segment
, which is the bisector of
. It follows that
is indeed the midpoint of arc
, so
,
,
,
, are concyclic. Since
and
subtend the same arc
,
=
. With
being the bisector of
, we have
We know that
. so we have
. Since
, and
, we have
The problem is solved.