Difference between revisions of "2005 AMC 10A Problems/Problem 24"
m (→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | For each positive integer <math> | + | For each positive integer <math> n > 1 </math>, let <math>P(n)</math> denote the greatest prime factor of <math>n</math>. For how many positive integers <math>n</math> is it true that both <math> P(n) = \sqrt{n} </math> and <math> P(n+48) = \sqrt{n+48} </math>? |
<math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 5 </math> | <math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 3\qquad \mathrm{(D) \ } 4\qquad \mathrm{(E) \ } 5 </math> |
Revision as of 22:58, 13 September 2015
Problem
For each positive integer , let denote the greatest prime factor of . For how many positive integers is it true that both and ?
Solution
If , then , where is a prime number.
If , then , where is a different prime number.
So:
Since : .
Looking at pairs of divisors of , we have several possibilities to solve for and :
The only solution where both numbers are primes is .
Therefore the number of positive integers that satisfy both statements is
See Also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.