Difference between revisions of "Circumference"

Line 3: Line 3:
 
'''Circumference''' is essentially a synonym for [[perimeter]]: for a given [[closed curve]] in the [[plane]], it is the distance one travels in a complete circuit of the curve.  The term circumference is most frequently used to refer to the distance around a [[circle]], though it may refer to the distance around any [[smooth]] curve, while the term perimeter is typically reserved for [[polygon]]s.  
 
'''Circumference''' is essentially a synonym for [[perimeter]]: for a given [[closed curve]] in the [[plane]], it is the distance one travels in a complete circuit of the curve.  The term circumference is most frequently used to refer to the distance around a [[circle]], though it may refer to the distance around any [[smooth]] curve, while the term perimeter is typically reserved for [[polygon]]s.  
  
In a circle of [[radius]] <math>r</math> and [[diameter]] <math>d = 2r</math>, the circumference <math>C</math> is given by <math>C = \pi \cdot d = 2\pi \cdot r</math>. Indeed, the [[constant]] <math>\pi</math> ([[pi]]) was originally defined to be the [[ratio]] of the circumference of a circle to the length of its diameter.
+
==Formulas==
 +
In a circle of [[radius]] <math>r</math> and [[diameter]] <math>d = 2r</math>, the circumference <math>C</math> is given by  
 +
<cmath>C = \pi \cdot d = 2\pi \cdot r</cmath>  Indeed, the [[constant]] <math>\pi</math> ([[pi]]) was originally defined to be the [[ratio]] of the circumference of a circle to the length of its diameter.
  
 
+
==See Also==
 
 
==See also==
 

Revision as of 12:56, 11 October 2015

This article is a stub. Help us out by expanding it.

Circumference is essentially a synonym for perimeter: for a given closed curve in the plane, it is the distance one travels in a complete circuit of the curve. The term circumference is most frequently used to refer to the distance around a circle, though it may refer to the distance around any smooth curve, while the term perimeter is typically reserved for polygons.

Formulas

In a circle of radius $r$ and diameter $d = 2r$, the circumference $C$ is given by \[C = \pi \cdot d = 2\pi \cdot r\] Indeed, the constant $\pi$ (pi) was originally defined to be the ratio of the circumference of a circle to the length of its diameter.

See Also