Difference between revisions of "2008 AMC 12A Problems/Problem 20"
Pragmatictnt (talk | contribs) m (→Solution) |
|||
Line 4: | Line 4: | ||
<math>\mathrm{(A)}\ \frac{1}{28}\left(10-\sqrt{2}\right)\qquad\mathrm{(B)}\ \frac{3}{56}\left(10-\sqrt{2}\right)\qquad\mathrm{(C)}\ \frac{1}{14}\left(10-\sqrt{2}\right)\qquad\mathrm{(D)}\ \frac{5}{56}\left(10-\sqrt{2}\right)\\\mathrm{(E)}\ \frac{3}{28}\left(10-\sqrt{2}\right)</math> | <math>\mathrm{(A)}\ \frac{1}{28}\left(10-\sqrt{2}\right)\qquad\mathrm{(B)}\ \frac{3}{56}\left(10-\sqrt{2}\right)\qquad\mathrm{(C)}\ \frac{1}{14}\left(10-\sqrt{2}\right)\qquad\mathrm{(D)}\ \frac{5}{56}\left(10-\sqrt{2}\right)\\\mathrm{(E)}\ \frac{3}{28}\left(10-\sqrt{2}\right)</math> | ||
− | == Solution == | + | == Solution 1== |
<center><asy> | <center><asy> | ||
import olympiad; | import olympiad; | ||
Line 49: | Line 49: | ||
&= \frac{3(4+\sqrt{2})}{4(3+\sqrt{2})} \cdot \left(\frac{3-\sqrt{2}}{3-\sqrt{2}}\right) = \frac{3}{28}(10-\sqrt{2}) \Rightarrow \mathrm{(E)}\qquad \blacksquare \end{align*}</cmath> | &= \frac{3(4+\sqrt{2})}{4(3+\sqrt{2})} \cdot \left(\frac{3-\sqrt{2}}{3-\sqrt{2}}\right) = \frac{3}{28}(10-\sqrt{2}) \Rightarrow \mathrm{(E)}\qquad \blacksquare \end{align*}</cmath> | ||
+ | ==Solution 2== | ||
+ | <center><asy> | ||
+ | import olympiad; | ||
+ | size(300); | ||
+ | defaultpen(0.8); | ||
+ | pair C=(0,0),A=(0,3),B=(4,0),D=(4-2.28571,1.71429); | ||
+ | pair O=incenter(A,C,D), P=incenter(B,C,D); | ||
+ | picture p = new picture; | ||
+ | draw(p,Circle(C,0.2)); | ||
+ | clip(p,P--C--D--cycle); | ||
+ | picture q = new picture; | ||
+ | draw(q, Circle(C, 0.3)); | ||
+ | clip(q, O--C--D--cycle); | ||
+ | add(p); | ||
+ | add(q); | ||
+ | draw(A--B--C--D--C--cycle); | ||
+ | draw(incircle(A,C,D)); | ||
+ | draw(incircle(B,C,D)); | ||
+ | draw(C--O); | ||
+ | draw(C--P); | ||
+ | dot(O);dot(P); | ||
+ | label("\(A\)",A,W); | ||
+ | label("\(B\)",B,E); | ||
+ | label("\(C\)",C,W); | ||
+ | label("\(D\)",D,NE); | ||
+ | label("\(O_a\)",O,W); | ||
+ | label("\(O_b\)",P,NW); | ||
+ | label("\(3\)",(A+C)/2,W); | ||
+ | label("\(4\)",(B+C)/2,S); | ||
+ | label("\(\frac{15}{7}\)",(A+D)/2,NE); | ||
+ | label("\(\frac{20}{7}\)",(B+D)/2,NE); | ||
+ | </asy></center> | ||
+ | |||
+ | We start by finding the length of <math>AD</math> and <math>BD</math> as in solution 1. Using the angle bisector theorem, we see that <math>AD = \frac{15}{7}</math> and <math>CD = \frac{20}{7}</math>. Using Stewart's Theorem gives us the equation <math>5d^2 + \frac{1500}{7} = \frac{240}{7} + \frac{180}{7}</math>, where <math>d</math> is the length of <math>CD</math>. Solving gives us <math>d = \frac{12\sqrt{2}}{7}</math>, so <math>CD = \frac{12\sqrt{2}}{7}</math>. | ||
+ | |||
+ | Call the incenters of triangles <math>ACD</math> and <math>BCD</math> <math>O_a</math> and <math>O_b</math> respectively. Since <math>O_a</math> is an incenter, it lies on the angle bisector | ||
+ | |||
+ | (Thanks to above solution for diagram) | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|num-b=19|num-a=21|ab=A}} | {{AMC12 box|year=2008|num-b=19|num-a=21|ab=A}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:12, 16 January 2016
Contents
Problem
Triangle has , , and . Point is on , and bisects the right angle. The inscribed circles of and have radii and , respectively. What is ?
Solution 1
By the Angle Bisector Theorem, By Law of Sines on , Since the area of a triangle satisfies , where the inradius and the semiperimeter, we have Since and share the altitude (to ), their areas are the ratio of their bases, or The semiperimeters are and . Thus,
Solution 2
We start by finding the length of and as in solution 1. Using the angle bisector theorem, we see that and . Using Stewart's Theorem gives us the equation , where is the length of . Solving gives us , so .
Call the incenters of triangles and and respectively. Since is an incenter, it lies on the angle bisector
(Thanks to above solution for diagram)
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.