Difference between revisions of "2016 AIME I Problems"
(→Problem 10) |
(→Problem 10) |
||
Line 33: | Line 33: | ||
==Problem 10== | ==Problem 10== | ||
− | A strictly increasing sequence of positive integers <math>a_1</math>, <math>a_2</math>, <math>a_3</math>, <math>\cdots</math> has the property that for every positive integer <math>k</math>, the subsequence <math>a_{2k-1}</math>, <math>a_{2k}</math>, <math>a_{2k+1}</math> is geometric and the subsequence <math>a_{2k}</math>, <math>a_{2k+1}</math>, <math>a_{2k+2}</math> is arithmetic. Suppose that <math> | + | A strictly increasing sequence of positive integers <math>a_1</math>, <math>a_2</math>, <math>a_3</math>, <math>\cdots</math> has the property that for every positive integer <math>k</math>, the subsequence <math>a_{2k-1}</math>, <math>a_{2k}</math>, <math>a_{2k+1}</math> is geometric and the subsequence <math>a_{2k}</math>, <math>a_{2k+1}</math>, <math>a_{2k+2}</math> is arithmetic. Suppose that <math>a_{13} = 2016</math>. Find <math>a_1</math>. |
[[2016 AIME I Problems/Problem 10 | Solution]] | [[2016 AIME I Problems/Problem 10 | Solution]] |
Revision as of 13:40, 4 March 2016
2016 AIME I (Answer Key) | AoPS Contest Collections • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Contents
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
In let be the center of the inscribed circle, and let the bisector of intersect at . The line through and intersects the circumscribed circle of at the two points and . If and , then , where and are relatively prime positive integers. Find .
Problem 7
Problem 8
Problem 9
Problem 10
A strictly increasing sequence of positive integers , , , has the property that for every positive integer , the subsequence , , is geometric and the subsequence , , is arithmetic. Suppose that . Find .
Problem 11
Let be a nonzero polynomial such that for every real , and . Then , where and are relatively prime positive integers. Find .
Problem 12
Problem 13
Problem 14
Problem 15
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by 2015 AIME II |
Followed by 2016 AIME II | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.