Difference between revisions of "2016 AIME I Problems/Problem 4"
Aleph null (talk | contribs) m (→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
+ | [asy] | ||
+ | import three; | ||
+ | size(7cm); | ||
+ | currentprojection = orthographic(5,-1,1.5); | ||
+ | |||
+ | triple T(int i){ return 12*dir(90,60*i) + (0,0,6*sqrt(3)); } | ||
+ | triple B(int i){ return 12*dir(90,60*i); } | ||
+ | |||
+ | for(int i = 0; i < 6; ++i){ | ||
+ | draw(B(i)--B(i + 1),0 < i && i < 6 ? i == 4 || i == 5 ? rgb(0,0.6,1) : linetype("4 4") : black); | ||
+ | draw(T(i)--T(i + 1)); | ||
+ | draw(T(i)--B(i),1 < i && i < 4 ? linetype("4 4") : i == 5 ? rgb(0,0.6,1) : black); | ||
+ | } | ||
+ | |||
+ | triple A = B(5), U = T(5), B = B(4), F = B(6); | ||
+ | |||
+ | draw(B--U--F--cycle,rgb(0,0.6,1)); | ||
+ | draw(arc(A/2,2,30,300,90,300),rgb(1,0.4,0.1)); | ||
+ | draw(U--A/2--A,rgb(1,0.4,0.1)); | ||
+ | |||
+ | dot(A); | ||
+ | label(scale(0.8)*"<math>A</math>",A,dir(200)); | ||
+ | label(scale(0.8)*"<math>60^\circ</math>",A/2,dir(50),rgb(1,0.4,0.1)); | ||
+ | label(scale(0.8)*"<math>h</math>",A--U,dir(0),rgb(0,0.6,1)); | ||
+ | [/asy] | ||
+ | |||
Let <math>B</math> and <math>C</math> be the vertices adjacent to <math>A</math> on the same base as <math>A</math>, and let <math>D</math> be the other vertex of the triangular pyramid. Then <math>\angle CAB = 120^\circ</math>. Let <math>X</math> be the foot of the altitude from <math>A</math> to <math>\overline{BC}</math>. Then since <math>\triangle ABX</math> is a <math>30-60-90</math> triangle, <math>AX = 6</math>. Since the dihedral angle between <math>\triangle ABC</math> and <math>\triangle BCD</math> is <math>60^\circ</math>, <math>\triangle AXD</math> is a <math>30-60-90</math> triangle and <math>AD = 6\sqrt{3} = h</math>. Thus <math>h^2 = \boxed{108}</math>. | Let <math>B</math> and <math>C</math> be the vertices adjacent to <math>A</math> on the same base as <math>A</math>, and let <math>D</math> be the other vertex of the triangular pyramid. Then <math>\angle CAB = 120^\circ</math>. Let <math>X</math> be the foot of the altitude from <math>A</math> to <math>\overline{BC}</math>. Then since <math>\triangle ABX</math> is a <math>30-60-90</math> triangle, <math>AX = 6</math>. Since the dihedral angle between <math>\triangle ABC</math> and <math>\triangle BCD</math> is <math>60^\circ</math>, <math>\triangle AXD</math> is a <math>30-60-90</math> triangle and <math>AD = 6\sqrt{3} = h</math>. Thus <math>h^2 = \boxed{108}</math>. | ||
+ | |||
+ | Diagram Credits: chezbgone2 | ||
== See also == | == See also == | ||
{{AIME box|year=2016|n=I|num-b=3|num-a=5}} | {{AIME box|year=2016|n=I|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:12, 4 March 2016
Problem
A right prism with height has bases that are regular hexagons with sides of length 12. A vertex of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain measures degrees. Find .
Solution
[asy] import three; size(7cm); currentprojection = orthographic(5,-1,1.5);
triple T(int i){ return 12*dir(90,60*i) + (0,0,6*sqrt(3)); } triple B(int i){ return 12*dir(90,60*i); }
for(int i = 0; i < 6; ++i){ draw(B(i)--B(i + 1),0 < i && i < 6 ? i == 4 || i == 5 ? rgb(0,0.6,1) : linetype("4 4") : black); draw(T(i)--T(i + 1)); draw(T(i)--B(i),1 < i && i < 4 ? linetype("4 4") : i == 5 ? rgb(0,0.6,1) : black); }
triple A = B(5), U = T(5), B = B(4), F = B(6);
draw(B--U--F--cycle,rgb(0,0.6,1)); draw(arc(A/2,2,30,300,90,300),rgb(1,0.4,0.1)); draw(U--A/2--A,rgb(1,0.4,0.1));
dot(A); label(scale(0.8)*"",A,dir(200)); label(scale(0.8)*"",A/2,dir(50),rgb(1,0.4,0.1)); label(scale(0.8)*"",A--U,dir(0),rgb(0,0.6,1)); [/asy]
Let and be the vertices adjacent to on the same base as , and let be the other vertex of the triangular pyramid. Then . Let be the foot of the altitude from to . Then since is a triangle, . Since the dihedral angle between and is , is a triangle and . Thus .
Diagram Credits: chezbgone2
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.