Difference between revisions of "2016 AIME I Problems/Problem 4"

(Solution)
(Solution)
Line 3: Line 3:
  
 
== Solution ==   
 
== Solution ==   
<math>[asy]
 
import three;
 
size(7cm);
 
currentprojection = orthographic(5,-1,1.5);
 
 
triple T(int i){ return 12*dir(90,60*i) + (0,0,6*sqrt(3)); }
 
triple B(int i){ return 12*dir(90,60*i); }
 
 
for(int i = 0; i < 6; ++i){
 
draw(B(i)--B(i + 1),0 < i && i < 6 ? i == 4 || i == 5 ? rgb(0,0.6,1) : linetype("4 4") : black);
 
draw(T(i)--T(i + 1));
 
draw(T(i)--B(i),1 < i && i < 4 ? linetype("4 4") : i == 5 ? rgb(0,0.6,1) : black);
 
}
 
 
triple A = B(5), U = T(5), B = B(4), F = B(6);
 
 
draw(B--U--F--cycle,rgb(0,0.6,1));
 
draw(arc(A/2,2,30,300,90,300),rgb(1,0.4,0.1));
 
draw(U--A/2--A,rgb(1,0.4,0.1));
 
 
dot(A);
 
label(scale(0.8)*"</math>A<math>",A,dir(200));
 
label(scale(0.8)*"</math>60^\circ<math>",A/2,dir(50),rgb(1,0.4,0.1));
 
label(scale(0.8)*"</math>h<math>",A--U,dir(0),rgb(0,0.6,1));
 
[/asy]</math>
 
 
 
Let <math>B</math> and <math>C</math> be the vertices adjacent to <math>A</math> on the same base as <math>A</math>, and let <math>D</math> be the other vertex of the triangular pyramid.  Then <math>\angle CAB = 120^\circ</math>. Let <math>X</math> be the foot of the altitude from <math>A</math> to <math>\overline{BC}</math>. Then since <math>\triangle ABX</math> is a <math>30-60-90</math> triangle, <math>AX = 6</math>.  Since the dihedral angle between <math>\triangle ABC</math> and <math>\triangle BCD</math> is <math>60^\circ</math>, <math>\triangle AXD</math> is a <math>30-60-90</math> triangle and <math>AD = 6\sqrt{3} = h</math>. Thus <math>h^2 = \boxed{108}</math>.
 
Let <math>B</math> and <math>C</math> be the vertices adjacent to <math>A</math> on the same base as <math>A</math>, and let <math>D</math> be the other vertex of the triangular pyramid.  Then <math>\angle CAB = 120^\circ</math>. Let <math>X</math> be the foot of the altitude from <math>A</math> to <math>\overline{BC}</math>. Then since <math>\triangle ABX</math> is a <math>30-60-90</math> triangle, <math>AX = 6</math>.  Since the dihedral angle between <math>\triangle ABC</math> and <math>\triangle BCD</math> is <math>60^\circ</math>, <math>\triangle AXD</math> is a <math>30-60-90</math> triangle and <math>AD = 6\sqrt{3} = h</math>. Thus <math>h^2 = \boxed{108}</math>.
 
Diagram Credits: chezbgone2
 
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2016|n=I|num-b=3|num-a=5}}
 
{{AIME box|year=2016|n=I|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:13, 4 March 2016

Problem

A right prism with height $h$ has bases that are regular hexagons with sides of length 12. A vertex $A$ of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain $A$ measures $60$ degrees. Find $h^2$.

Solution

Let $B$ and $C$ be the vertices adjacent to $A$ on the same base as $A$, and let $D$ be the other vertex of the triangular pyramid. Then $\angle CAB = 120^\circ$. Let $X$ be the foot of the altitude from $A$ to $\overline{BC}$. Then since $\triangle ABX$ is a $30-60-90$ triangle, $AX = 6$. Since the dihedral angle between $\triangle ABC$ and $\triangle BCD$ is $60^\circ$, $\triangle AXD$ is a $30-60-90$ triangle and $AD = 6\sqrt{3} = h$. Thus $h^2 = \boxed{108}$.

See also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png