Difference between revisions of "Stewart's Theorem"

m (proofreading)
Line 8: Line 8:
  
 
== Proof ==
 
== Proof ==
For this proof we will use the law of cosines and the identity <math>\cos{\theta} = -\cos{(180 - \theta)}</math>.
+
For this proof, we will use the law of cosines and the identity <math>\cos{\theta} = -\cos{(180 - \theta)}</math>.
  
Label the triangle <math>ABC</math> with a cevian extending from <math>A</math> onto <math>BC</math>, label that point <math>D</math>. Let CA = n Let DB = m. Let AD = d. We can write two equations:
+
Label the triangle <math>ABC</math> with a cevian extending from <math>A</math> onto <math>BC</math>, label that point <math>D</math>. Let CA = n. Let DB = m. Let AD = d. We can write two equations:
 
*<math> n^{2} + d^{2} - nd\cos{\angle CDA} = b^{2} </math>
 
*<math> n^{2} + d^{2} - nd\cos{\angle CDA} = b^{2} </math>
 
*<math> m^{2} + d^{2} + md\cos{\angle CDA} = c^{2} </math>
 
*<math> m^{2} + d^{2} + md\cos{\angle CDA} = c^{2} </math>
Line 17: Line 17:
 
*<math> \frac{c^2 - m^2 -d^2}{md} = \cos{\angle CDA}</math>
 
*<math> \frac{c^2 - m^2 -d^2}{md} = \cos{\angle CDA}</math>
  
Now we set the two equal and arrive at Stewart's theorem: <math> c^{2}n + b^{2}m=m^{2}n +n^{2}m + d^{2}m + d^{2}n </math>
+
Now we set the two equal and arrive at Stewart's theorem: <math> c^{2}n + b^{2}m=m^{2}n +n^{2}m + d^{2}m + d^{2}n </math>.
  
 
== See also ==  
 
== See also ==  

Revision as of 12:05, 17 July 2006

Statement

Stewart's theorem.png

If a cevian of length d is drawn and divides side a into segments m and n, then

$cnc + bmb = man + dad.$


Proof

For this proof, we will use the law of cosines and the identity $\cos{\theta} = -\cos{(180 - \theta)}$.

Label the triangle $ABC$ with a cevian extending from $A$ onto $BC$, label that point $D$. Let CA = n. Let DB = m. Let AD = d. We can write two equations:

  • $n^{2} + d^{2} - nd\cos{\angle CDA} = b^{2}$
  • $m^{2} + d^{2} + md\cos{\angle CDA} = c^{2}$

When we write everything in terms of cos(CDA) we have:

  • $\frac{n^2 + d^2 - b^2}{nd} = \cos{\angle CDA}$
  • $\frac{c^2 - m^2 -d^2}{md} = \cos{\angle CDA}$

Now we set the two equal and arrive at Stewart's theorem: $c^{2}n + b^{2}m=m^{2}n +n^{2}m + d^{2}m + d^{2}n$.

See also