Difference between revisions of "2005 AMC 10A Problems/Problem 15"
m (→Solution 2) |
m (→Problem) |
||
Line 2: | Line 2: | ||
How many positive cubes divide <math> 3! \cdot 5! \cdot 7! </math> ? | How many positive cubes divide <math> 3! \cdot 5! \cdot 7! </math> ? | ||
− | <math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } | + | <math> \mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 16 </math> |
==Solution== | ==Solution== |
Revision as of 15:01, 1 January 2017
Problem
How many positive cubes divide ?
Solution
Solution 1
Therefore, a perfect cube that divides must be in the form where , , , and are nonnegative multiples of that are less than or equal to , , and , respectively.
So:
( possibilities)
( possibilities)
( possibility)
( possibility)
So the number of perfect cubes that divide is
Solution 2
Answer :
See Also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.