Difference between revisions of "2017 AMC 10A Problems/Problem 1"

(Solution)
(Solution)
Line 12: Line 12:
 
a_1 = 3.\\
 
a_1 = 3.\\
 
a_n = 2a_(n-1) + 1.\\
 
a_n = 2a_(n-1) + 1.\\
It follows that:\\
+
 
 
a_2 = 3*2 + 1 = 7.\\
 
a_2 = 3*2 + 1 = 7.\\
 
a_3 = 7 *2 + 1 = 15.\\
 
a_3 = 7 *2 + 1 = 15.\\

Revision as of 14:20, 8 February 2017

Problem

What is the value of $(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)$?

$\textbf{(A)}\ 70\qquad\textbf{(B)}\ 97\qquad\textbf{(C)}\ 127\qquad\textbf{(D)}\ 159\qquad\textbf{(E)}\ 729$


Solution

Notice this is the term $a_6$ in an arithmetic sequence, such that:

\[\begin{split}
a_1 = 3.\\
a_n = 2a_(n-1) + 1.\\

a_2 = 3*2 + 1 = 7.\\
a_3 = 7 *2 + 1 = 15.\\
a_4 = 15*2 + 1 = 31.\\
a_5 = 31*2 + 1 = 63.\\
a_6 = 63*2 + 1 = \boxed{\textbf{(C)}\ 127.}
\end{split}\] (Error compiling LaTeX. Unknown error_msg)