Difference between revisions of "1970 IMO Problems/Problem 6"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | At most <math>3</math> of the triangles formed by <math>4</math> points can be acute. It follows that at most <math>7</math> out of the <math>10</math> triangles formed by any <math>5</math> points can be acute. For given <math>10</math> points, the maximum number of acute triangles is: the number of subsets of <math>4</math> points times <math>\frac{3}{\text{the number of subsets of 4 points containing 3 given points}}</math>. The total number of triangles is the same expression with the first <math>3</math> replaced by <math>4</math>. Hence at most <math>\frac{3}{4}</math> of the <math>10</math>, or <math>7.5</math>, can be acute, and hence at most <math></math> | + | At most <math>3</math> of the triangles formed by <math>4</math> points can be acute. It follows that at most <math>7</math> out of the <math>10</math> triangles formed by any <math>5</math> points can be acute. For given <math>10</math> points, the maximum number of acute triangles is: the number of subsets of <math>4</math> points times <math>\frac{3}{\text{the number of subsets of 4 points containing 3 given points}}</math>. The total number of triangles is the same expression with the first <math>3</math> replaced by <math>4</math>. Hence at most <math>\frac{3}{4}</math> of the <math>10</math>, or <math>7.5</math>, can be acute, and hence at most <math>7</math> can be acute. |
The same argument now extends the result to <math>100</math> points. The maximum number of acute triangles formed by <math>100</math> points is: the number of subsets of <math>5</math> points times <math>\frac{7}{\text{the number of subsets of 5 points containing 3 given points}}</math>. The total number of triangles is the same expression with <math>7</math> replaced by <math>10</math>. Hence at most <math>\frac{7}{10}</math> of the triangles are acute. | The same argument now extends the result to <math>100</math> points. The maximum number of acute triangles formed by <math>100</math> points is: the number of subsets of <math>5</math> points times <math>\frac{7}{\text{the number of subsets of 5 points containing 3 given points}}</math>. The total number of triangles is the same expression with <math>7</math> replaced by <math>10</math>. Hence at most <math>\frac{7}{10}</math> of the triangles are acute. | ||
Revision as of 19:26, 14 July 2017
Problem
In a plane there are points, no three of which are collinear. Consider all possible triangles having these point as vertices. Prove that no more than
of these triangles are acute-angled.
Solution
At most of the triangles formed by
points can be acute. It follows that at most
out of the
triangles formed by any
points can be acute. For given
points, the maximum number of acute triangles is: the number of subsets of
points times
. The total number of triangles is the same expression with the first
replaced by
. Hence at most
of the
, or
, can be acute, and hence at most
can be acute.
The same argument now extends the result to
points. The maximum number of acute triangles formed by
points is: the number of subsets of
points times
. The total number of triangles is the same expression with
replaced by
. Hence at most
of the triangles are acute.
1970 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last question |
All IMO Problems and Solutions |