Difference between revisions of "1993 AHSME Problems/Problem 21"

(Solution)
(Problem)
Line 10: Line 10:
 
\text{(D) } 22\quad
 
\text{(D) } 22\quad
 
\text{(E) } 24</math>
 
\text{(E) } 24</math>
 
Note that <math>a_7-3d=a_4</math> and <math>a_7+3d=a_{10}</math> where <math>d</math> is the common difference, so <math>a_4+a_7+a_{10}=3a_7=17</math>, or <math>a_7=\frac{17}{3}</math>.
 
 
Likewise, we can write every term in the second equation in terms of <math>a_9</math>, giving us <math>11a_9=77\implies a_9=7</math>.
 
 
Then the common difference is <math>\frac{2}{3}</math>. Then <math>a_k-a_9=13-7=6=9\cdot\frac{2}{3}</math>.
 
 
This means <math>a_k</math> is <math>9</math> terms after <math>a_9</math>, so <math>k=18\implies\boxed{B}</math>
 
  
 
== See also ==
 
== See also ==

Revision as of 16:48, 26 August 2017

Problem

Let $a_1,a_2,\cdots,a_k$ be a finite arithmetic sequence with $a_4 +a_7+a_{10} = 17$ and $a_4+a_5+\cdots+a_{13} +a_{14} = 77$.

If $a_k = 13$, then $k =$

$\text{(A) } 16\quad \text{(B) } 18\quad \text{(C) } 20\quad \text{(D) } 22\quad \text{(E) } 24$

See also

1993 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png