Difference between revisions of "2013 AMC 8 Problems/Problem 7"
m (→Solution 1) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Trey and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and | + | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Trey and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and 35 seconds to clear the crossing at a constant speed. Which of the following was the most likely number of cars in the train?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> |
<math>\textbf{(A)}\ 60 \qquad \textbf{(B)}\ 80 \qquad \textbf{(C)}\ 100 \qquad \textbf{(D)}\ 120 \qquad \textbf{(E)}\ 140</math> | <math>\textbf{(A)}\ 60 \qquad \textbf{(B)}\ 80 \qquad \textbf{(C)}\ 100 \qquad \textbf{(D)}\ 120 \qquad \textbf{(E)}\ 140</math> |
Revision as of 12:45, 29 October 2017
Contents
Problem
Trey and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and 35 seconds to clear the crossing at a constant speed. Which of the following was the most likely number of cars in the train?
Solution 1
If Trey saw , then he saw .
2 minutes and 45 seconds can also be expressed as seconds.
Trey's rate of seeing cars, , can be multiplied by on the top and bottom (and preserve the same rate):
. It follows that the most likely number of cars is .
Solution 2
minutes and seconds is equal to .
Since Trey probably counts around cars every seconds, there are groups of cars that Trey most likely counts. Since , the closest answer choice is .
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.