Difference between revisions of "2012 AMC 10B Problems/Problem 14"

(Solution)
m (Solution)
Line 16: Line 16:
  
 
==Solution==
 
==Solution==
[[File:2012_AMC-10B-14.jpg‎]]
+
<center><asy>
 +
size(8cm);
 +
pair A, B, C, D, E, F, G, H, BF, AF;
 +
A = (0,0);
 +
B = (1,0);
 +
C = (1,1);
 +
D = (0,1);
 +
E = (1/2,0);
 +
H = (1/2,1);
 +
G = (1/2,1/2^(1/2));
 +
F = (1/2,1-(1/2^(1/2)));
 +
AF = (3^(1/2)/2,1/2);
 +
BF = (1-3^(1/2)/2,1/2);
 +
draw(A--B--C--D--A--AF--D);
 +
draw(C--BF--B);
 +
draw(H--E,linetype("8 8"));
 +
label("$A$",A,SW);
 +
label("$B$",B,SE);
 +
label("$C$",C,NE);
 +
label("$D$",D,NW);
 +
label("$E$",E,S);
 +
label("$H$",H,N);
 +
label("$G$",G+1/20,E);
 +
label("$F$",F-1/20,W);
 +
</asy></center>
  
 
Observe that the rhombus is made up of two congruent equilateral triangles with side length equal to GF. Since AE has length <math>\sqrt{3}</math> and triangle AEF is a 30-60-90 triangle, it follows that EF has length 1. By symmetry, HG also has length 1. Thus GF has length <math>2\sqrt{3} - 2</math>. The formula for the area of an equilateral triangle of length s is <math>\frac{\sqrt{3}}{4}s^2</math>. It follows that the area of the rhombus is:
 
Observe that the rhombus is made up of two congruent equilateral triangles with side length equal to GF. Since AE has length <math>\sqrt{3}</math> and triangle AEF is a 30-60-90 triangle, it follows that EF has length 1. By symmetry, HG also has length 1. Thus GF has length <math>2\sqrt{3} - 2</math>. The formula for the area of an equilateral triangle of length s is <math>\frac{\sqrt{3}}{4}s^2</math>. It follows that the area of the rhombus is:
  
<math>2\times\frac{\sqrt{3}}{4}(2\sqrt{3}-2)^2 = 8\sqrt{3} - 12</math>
+
<math>2\times\frac{\sqrt{3}}{4}(2\sqrt{3}-2)^2 = \boxed{\mathbf{(D)} 8\sqrt{3} - 12}</math>
 
 
Thus, answer choice <math>\boxed{D}</math> is correct.
 
  
 
==See Also==
 
==See Also==

Revision as of 16:40, 29 December 2017

Problem

Two equilateral triangles are contained in square whose side length is $2\sqrt 3$. The bases of these triangles are the opposite side of the square, and their intersection is a rhombus. What is the area of the rhombus?

$\text{(A) } \frac{3}{2} \qquad \text{(B) } \sqrt 3 \qquad \text{(C) } 2\sqrt 2 -   1  \qquad \text{(D) } 8\sqrt 3 - 12 \qquad \text{(E)}  \frac{4\sqrt 3}{3}$

Solution

[asy] size(8cm); pair A, B, C, D, E, F, G, H, BF, AF; A = (0,0); B = (1,0); C = (1,1); D = (0,1); E = (1/2,0); H = (1/2,1); G = (1/2,1/2^(1/2)); F = (1/2,1-(1/2^(1/2))); AF = (3^(1/2)/2,1/2); BF = (1-3^(1/2)/2,1/2); draw(A--B--C--D--A--AF--D); draw(C--BF--B); draw(H--E,linetype("8 8")); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,S); label("$H$",H,N); label("$G$",G+1/20,E); label("$F$",F-1/20,W); [/asy]

Observe that the rhombus is made up of two congruent equilateral triangles with side length equal to GF. Since AE has length $\sqrt{3}$ and triangle AEF is a 30-60-90 triangle, it follows that EF has length 1. By symmetry, HG also has length 1. Thus GF has length $2\sqrt{3} - 2$. The formula for the area of an equilateral triangle of length s is $\frac{\sqrt{3}}{4}s^2$. It follows that the area of the rhombus is:

$2\times\frac{\sqrt{3}}{4}(2\sqrt{3}-2)^2 = \boxed{\mathbf{(D)} 8\sqrt{3} - 12}$

See Also

2012 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png