Difference between revisions of "2011 AMC 10A Problems/Problem 16"

(Solution 1)
(Solution 2)
Line 14: Line 14:
 
== Solution 2 ==
 
== Solution 2 ==
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
&\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{81-38}+\sqrt{81+38}\right)}\\  = \ &\sqrt{\left(\sqrt{162}\right}\\ = \ &\sqrt{\left(\sqrt{(3^4)\2} = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}.
+
&\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{81-38}+\sqrt{81+38}\right)}\\  = \ &\sqrt{\left(\sqrt{162}\right}\\ = \ &\sqrt{\left(\sqrt{(3^4)\2} = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  

Revision as of 00:03, 4 February 2018

Problem 16

Which of the following is equal to $\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}$?

$\text{(A)}\,3\sqrt2 \qquad\text{(B)}\,2\sqrt6 \qquad\text{(C)}\,\frac{7\sqrt2}{2} \qquad\text{(D)}\,3\sqrt3 \qquad\text{(E)}\,6$

Solution 1

We find the answer by squaring, then square rooting the expression.

\begin{align*} &\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\right)^2}\\ = \ &\sqrt{9-6\sqrt{2}+2\sqrt{(9-6\sqrt{2})(9+6\sqrt{2})}+9+6\sqrt{2}}\\ = \ &\sqrt{18+2\sqrt{(9-6\sqrt{2})(9+6\sqrt{2})}}\\ = \ &\sqrt{18+2\sqrt{9^2-(6\sqrt{2})^2}}\\ = \ &\sqrt{18+2\sqrt{81-72}}\\ = \ &\sqrt{18+2\sqrt{9}}\\ = \ &\sqrt{18+6}\\= \ &\sqrt{24}\\ = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}. \end{align*}

Solution 2

\begin{align*}
&\sqrt{9-6\sqrt{2}}+\sqrt{9+6\sqrt{2}}\\ = \ &\sqrt{\left(\sqrt{81-38}+\sqrt{81+38}\right)}\\  = \ &\sqrt{\left(\sqrt{162}\right}\\ = \ &\sqrt{\left(\sqrt{(3^4)\2} = \ &\boxed{2\sqrt{6} \ \mathbf{(B)}}.
\end{align*} (Error compiling LaTeX. Unknown error_msg)

See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png