Difference between revisions of "2016 AIME II Problems/Problem 6"

m
m
Line 1: Line 1:
 +
==Problem==
 
For polynomial <math>P(x)=1-\dfrac{1}{3}x+\dfrac{1}{6}x^{2}</math>, define
 
For polynomial <math>P(x)=1-\dfrac{1}{3}x+\dfrac{1}{6}x^{2}</math>, define
 
<math>Q(x)=P(x)P(x^{3})P(x^{5})P(x^{7})P(x^{9})=\sum_{i=0}^{50} a_ix^{i}</math>.
 
<math>Q(x)=P(x)P(x^{3})P(x^{5})P(x^{7})P(x^{9})=\sum_{i=0}^{50} a_ix^{i}</math>.

Revision as of 16:18, 22 March 2018

Problem

For polynomial $P(x)=1-\dfrac{1}{3}x+\dfrac{1}{6}x^{2}$, define $Q(x)=P(x)P(x^{3})P(x^{5})P(x^{7})P(x^{9})=\sum_{i=0}^{50} a_ix^{i}$. Then $\sum_{i=0}^{50} |a_i|=\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution 1

Note that all the coefficients of odd-powered terms is an odd number of odd degree terms multiplied together, and all coefficients of even-powered terms have an even number of odd degree terms multiplied together. Since every odd degree term is negative, and every even degree term is positive, the sum is just equal to $Q(-1)=P(-1)^{5}=\left( \dfrac{3}{2}\right)^{5}=\dfrac{243}{32}$, so the desired answer is $243+32=\boxed{275}$.

Solution by Shaddoll

Solution 2

We are looking for the sum of the absolute values of the coefficients of $Q(x)$. By defining $P'(x) = 1 + \frac{1}{3}x+\frac{1}{6}x^2$, and defining $Q'(x) = P'(x)P'(x^3)P'(x^5)P'(x^7)P'(x^9)$, we have made it so that all coefficients in $Q'(x)$ are just the positive/absolute values of the coefficients of $Q(x)$. .


To find the sum of the absolute values of the coefficients of $Q(x)$, we can just take the sum of the coefficients of $Q'(x)$. This sum is equal to \[Q'(1) = P'(1)P'(1)P'(1)P'(1)P'(1) = \left(1+\frac{1}{3}+\frac{1}{6}\right)^5 = \frac{243}{32},\]

so our answer is $243+32 = \boxed{275}$.


Solution by ExuberantGPACN

See also

2016 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions