Difference between revisions of "1960 AHSME Problems/Problem 15"
Rockmanex3 (talk | contribs) m (→Problem) |
Rockmanex3 (talk | contribs) m (→Solution) |
||
Line 21: | Line 21: | ||
</asy> | </asy> | ||
− | First, find <math>P</math>, <math>K</math>, and <math>R</math> in terms of <math>A</math>. Since all sides of equilateral triangle are the same, <math>P=3A</math>. From the area formula, <math>K=\frac{A^2\sqrt{3}}{4}</math>. By using 30-60-90 triangles, <math>R=\frac{A\sqrt{3}}{3}</math>. | + | First, find <math>P</math>, <math>K</math>, and <math>R</math> in terms of <math>A</math>. Since all sides of an [[equilateral triangle]] are the same, <math>P=3A</math>. From the area formula, <math>K=\frac{A^2\sqrt{3}}{4}</math>. By using 30-60-90 triangles, <math>R=\frac{A\sqrt{3}}{3}</math>. |
Using the same steps, <math>p=3a</math>, <math>k=\frac{a^2\sqrt{3}}{4}</math>, and <math>r=\frac{a\sqrt{3}}{3}</math>. | Using the same steps, <math>p=3a</math>, <math>k=\frac{a^2\sqrt{3}}{4}</math>, and <math>r=\frac{a\sqrt{3}}{3}</math>. |
Revision as of 10:34, 14 May 2018
Problem
Triangle is equilateral with side , perimeter , area , and circumradius (radius of the circumscribed circle). Triangle is equilateral with side , perimeter , area , and circumradius . If is different from , then:
Solution
First, find , , and in terms of . Since all sides of an equilateral triangle are the same, . From the area formula, . By using 30-60-90 triangles, .
Using the same steps, , , and .
Note that and . That means , so the answer is
See Also
1960 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |