Difference between revisions of "2016 AIME I Problems/Problem 2"

(Solution)
(Problem 2)
Line 1: Line 1:
 
==Problem 2==
 
==Problem 2==
Two dice appear to be normal dice with their faces numbered from <math>1</math> to <math>6</math>, but each die is weighted so that the probability of rolling the number <math>k</math> is directly proportional to <math>k</math>. The probability of rolling a <math>7</math> with this pair of dice is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
+
Two dice appear to be normal dice with their faces numbered from <math>1</math> to <math>6</math>, but each die is weighted so that the probability of rolling the number <math>k</math> is directly proportional to <math>k</math>. The probability of rolling a <math>7</math> with this pair of dice is <math>\frac{m}{n}</math>, where
 +
 
 
==Solution==
 
==Solution==
 
It is easier to think of the dice as <math>21</math> sided dice with <math>6</math> sixes, <math>5</math> fives, etc.  Then there are <math>21^2=441</math> possible rolls. There are <math>2\cdot(1\cdot 6+2\cdot 5+3\cdot 4)=56</math> rolls that will result in a seven.  The odds are therefore <math>\frac{56}{441}=\frac{8}{63}</math>.  The answer is <math>8+63=\boxed{071}</math>
 
It is easier to think of the dice as <math>21</math> sided dice with <math>6</math> sixes, <math>5</math> fives, etc.  Then there are <math>21^2=441</math> possible rolls. There are <math>2\cdot(1\cdot 6+2\cdot 5+3\cdot 4)=56</math> rolls that will result in a seven.  The odds are therefore <math>\frac{56}{441}=\frac{8}{63}</math>.  The answer is <math>8+63=\boxed{071}</math>

Revision as of 06:36, 3 June 2018

Problem 2

Two dice appear to be normal dice with their faces numbered from $1$ to $6$, but each die is weighted so that the probability of rolling the number $k$ is directly proportional to $k$. The probability of rolling a $7$ with this pair of dice is $\frac{m}{n}$, where

Solution

It is easier to think of the dice as $21$ sided dice with $6$ sixes, $5$ fives, etc. Then there are $21^2=441$ possible rolls. There are $2\cdot(1\cdot 6+2\cdot 5+3\cdot 4)=56$ rolls that will result in a seven. The odds are therefore $\frac{56}{441}=\frac{8}{63}$. The answer is $8+63=\boxed{071}$

See also 2006 AMC 12B Problems/Problem 17

See also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png