2016 AIME II Problems/Problem 6
Problem
For polynomial , define . Then , where and are relatively prime positive integers. Find .
Solution 1
Note that all the coefficients of odd-powered terms is an odd number of odd degree terms multiplied together, and all coefficients of even-powered terms have an even number of odd degree terms multiplied together. Since every odd degree term is negative, and every even degree term is positive, the sum is just equal to , so the desired answer is .
Solution by Shaddoll
Solution 2
We are looking for the sum of the absolute values of the coefficients of . By defining , and defining , we have made it so that all coefficients in are just the positive/absolute values of the coefficients of . .
To find the sum of the absolute values of the coefficients of , we can just take the sum of the coefficients of . This sum is equal to
so our answer is .
Solution by ExuberantGPACN
Note: this method doesn't work for every product of polynomials. Example: The sum of the absolute values of the coefficients of is but when you find the sum of the coefficients of which is , then you get . - whatRthose
Solution 3 (risky)
Multiply and notice that the odd degree terms have a negative coefficient. Observing that this is probably true for all polynomials like this (including ), we plug in to get .
See also
2016 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |