1966 AHSME Problems/Problem 36

Revision as of 21:01, 23 December 2019 by Nafer (talk | contribs) (Solution 2)

Problem

Let $(1+x+x^2)^n=a_1x+a_2x^2+ \cdots + a_{2n}x^{2n}$ be an identity in $x$. If we let $s=a_0+a_2+a_4+\cdots +a_{2n}$, then $s$ equals:

$\text{(A) } 2^n \quad \text{(B) } 2^n+1 \quad \text{(C) } \frac{3^n-1}{2} \quad \text{(D) } \frac{3^n}{2} \quad \text{(E) } \frac{3^n+1}{2}$

Solution

$\fbox{E}$

Solution 2

Let f(x)=(1+x+x^2)^n then we have $s=a_0+a_1+a_2+...a_{2n}=f(1)=(1+1+1)^n=3^n$

See also

1966 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 35
Followed by
Problem 37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png