2016 IMO Problems/Problem 2
Problem
Find all integers for which each cell of table can be filled with one of the letters and in such a way that:
|
Note. The rows and columns of an table are each labelled to in a natural order. Thus each cell corresponds to a pair of positive integer with . For , the table has diagonals of two types. A diagonal of first type consists all cells for which is a constant, and the diagonal of this second type consists all cells for which is constant.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2016 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |