1957 AHSME Problems/Problem 8

Revision as of 14:40, 12 October 2020 by Angrybird029 (talk | contribs)

The numbers $x,\,y,\,z$ are proportional to $2,\,3,\,5$. The sum of $x, y$, and $z$ is $100$. The number y is given by the equation $y = ax - 10$. Then a is:

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ \frac{3}{2}\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ \frac{5}{2}\qquad \textbf{(E)}\ 4$

Solution

In order to solve the problem, we first need to find each of the three variables. We can use the proportions the problem gives us to find the value of one part, and, by extension, the values of the variables (as $x$ would have $2$ parts, $y$ would have $3$, and $z$ would have $5$). One part, after some algebra, equals $10$, so $x$, $y$, and $z$ are $20$, $30$, and $50$, respectively.

We can plug $x$ and $y$ into the equation given to us: $30 = 20a-10$, and then solve to get $a = \boxed{\textbf{(A)}2}$.

See Also

1957 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png