1956 AHSME Problems/Problem 7

Revision as of 11:42, 15 March 2023 by Megaboy6679 (talk | contribs) (Solution)

Problem

The roots of the equation $ax^2 + bx + c = 0$ will be reciprocal if:

$\textbf{(A)}\ a = b \qquad\textbf{(B)}\ a = bc \qquad\textbf{(C)}\ c = a \qquad\textbf{(D)}\ c = b \qquad\textbf{(E)}\ c = ab$


Solution

Dividing the equation by $a\quad(a\neq0)$ gives: $x^2+\frac{b}{a}x+\frac{c}{a}$. Let $r$ and $s$ be the roots of the equation \[r=\frac{1}{s}\] \[rs=1\]

From Vieta's formula, $rs=\frac{c}{a}\Rightarrow\frac{c}{a}=1\Rightarrow\boxed{\text{(C) }c=a}$

See Also

1956 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png