2007 AMC 12B Problems/Problem 14

Revision as of 13:12, 4 June 2021 by Mobius247 (talk | contribs) (Solution)
The following problem is from both the 2007 AMC 12B #14 and 2007 AMC 10B #17, so both problems redirect to this page.

Problem

Point $P$ is inside equilateral $\triangle ABC$. Points $Q$, $R$, and $S$ are the feet of the perpendiculars from $P$ to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. Given that $PQ=1$, $PR=2$, and $PS=3$, what is $AB$?

$\mathrm{(A)}\ 4 \qquad \mathrm{(B)}\ 3\sqrt{3} \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 4\sqrt{3} \qquad \mathrm{(E)}\ 9$

Solution

Drawing $\overline{PA}$, $\overline{PB}$, and $\overline{PC}$, $\triangle ABC$ is split into three smaller triangles. The altitudes of these triangles are given in the problem as $PQ$, $PR$, and $PS$.

Summing the areas of each of these triangles and equating it to the area of the entire triangle, we get:

\[\frac{s}{2} + \frac{2s}{2} + \frac{3s}{2} = \frac{s^2\sqrt{3}}{4}\] where $s$ is the length of a side of the equilateral triangle

\[s = \boxed{\mathrm{(D) \ } 4\sqrt{3}}\]

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png