2013 AMC 12A Problems/Problem 19

Revision as of 19:32, 1 July 2021 by Samrocksnature (talk | contribs) (Undo revision 157186 by Samrocksnature (talk))

Problem

In $\bigtriangleup ABC$, $AB = 86$, and $AC = 97$. A circle with center $A$ and radius $AB$ intersects $\overline{BC}$ at points $B$ and $X$. Moreover $\overline{BX}$ and $\overline{CX}$ have integer lengths. What is $BC$?


$\textbf{(A)} \ 11 \qquad  \textbf{(B)} \ 28 \qquad  \textbf{(C)} \ 33 \qquad  \textbf{(D)} \ 61 \qquad  \textbf{(E)} \ 72$

Solution

Solution 1 (Number theoretic power of a point)

[asy]  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(7cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.5) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -156.86902060182828, xmax = 261.4826629156128, ymin = -137.6904841249097, ymax = 103.70826798306636;  /* image dimensions */   draw((0,0)--(-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263)--cycle, linewidth(1));   /* draw figures */ draw(circle((0,0), 86), linewidth(1));  draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth(1));  draw((0,0)--(-45.39592734786701,-73.0425203578517), linewidth(1));  draw((-45.39592734786701,-73.0425203578517)--(10.963968250054833,-96.37837620655263), linewidth(1));  draw((10.963968250054833,-96.37837620655263)--(0,0), linewidth(1));  draw((0,0)--(-19.525811335706223,-83.75406074741933), linewidth(1));  draw((0,0)--(-9.720631644378512,85.4488696264281), linewidth(1));  label("$x$",(-7.2236403357984384,-86.89843899811834),SE*labelscalefactor);  label("$y$",(-37.535022105012516,-75.42926751787513),SE*labelscalefactor);   /* dots and labels */ dot((0,0),linewidth(1pt) + dotstyle);  label("$A$", (0.9686250072323931,2.1241777294836823), NE * labelscalefactor);  dot((-45.39592734786701,-73.0425203578517),dotstyle);  label("$B$", (-47.36574051664951,-68.87545524345045), NE * labelscalefactor);  dot((10.963968250054833,-96.37837620655263),linewidth(1pt) + dotstyle);  label("$C$", (12.164720976041195,-94.27147780684612), NE * labelscalefactor);  dot((-19.525811335706223,-83.75406074741933),linewidth(1pt) + dotstyle);  label("$X$", (-15.68898119026363,-81.98307979229983), NE * labelscalefactor);  dot((9.720631644378512,-85.4488696264281),linewidth(1pt) + dotstyle);  label("$D$", (10.799343418869391,-83.34845734947163), NE * labelscalefactor);  dot((-9.720631644378512,85.4488696264281),linewidth(1pt) + dotstyle);  label("$E$", (-8.589017892970244,87.596812808439), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy]

Let $CX=x, BX=y$. Let the circle intersect $AC$ at $D$ and the diameter including $AD$ intersect the circle again at $E$. Use power of a point on point C to the circle centered at A.

So $CX*CB=CD*CE=>$ $x(x+y)=(97-86)(97+86)=>$ $x(x+y)=3*11*61$.

Obviously $x+y>x$ so we have three solution pairs for $(x,x+y)=(1,2013),(3,671),(11,183),(33,61)$. By the Triangle Inequality, only$x+y=61$ yields a possible length of $BX+CX=BC$.

Therefore, the answer is D) 61.

Solution 2

Let $BX = q$, $CX = p$, and $AC$ meet the circle at $Y$ and $Z$, with $Y$ on $AC$. Then $AZ = AY = 86$. Using the Power of a Point, we get that $p(p+q) = 11(183) = 11 * 3 * 61$. We know that $p+q>p$, and that $p>13$ by the triangle inequality on $\triangle ACX$. Thus, we get that $BC = p+q = \boxed{\textbf{(D) }61}$

Solution 3

Let $x$ represent $CX$, and let $y$ represent $BX$. Since the circle goes through $B$ and $X$, $AB = AX = 86$. Then by Stewart's Theorem,

$xy(x+y) + 86^2 (x+y) = 97^2 y + 86^2 x.$

$x^2 y + xy^2 + 86^2 x + 86^2 y = 97^2 y + 86^2 x$

$x^2 + xy + 86^2 = 97^2$

(Since $y$ cannot be equal to $0$, dividing both sides of the equation by $y$ is allowed.)

$x(x+y) = (97+86)(97-86)$

$x(x+y) = 2013$

The prime factors of $2013$ are $3$, $11$, and $61$. Obviously, $x < x+y$. In addition, by the Triangle Inequality, $BC < AB + AC$, so $x+y < 183$. Therefore, $x$ must equal $33$, and $x+y$ must equal $\boxed{\textbf{(D) }61}$

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2013amc12a/357

~dolphin7

Video Solution

https://youtu.be/zxW3uvCQFls

~sugar_rush

See also

2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png