2021 Fall AMC 12A Problems/Problem 15
Revision as of 01:01, 26 November 2021 by MRENTHUSIASM (talk | contribs) (→Solution 2: Removed repetitive solution. Prof. Chen agreed to this through PM ...)
Problem 15
Recall that the conjugate of the complex number , where and are real numbers and , is the complex number . For any complex number , let . The polynomial has four complex roots: , , , and . Let be the polynomial whose roots are , , , and , where the coefficients and are complex numbers. What is
Solution
By Vieta's formulas, , and
Since Since
Also, and
Our answer is
~kingofpineapplz
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.