2021 Fall AMC 12A Problems/Problem 19

Revision as of 01:07, 26 November 2021 by MRENTHUSIASM (talk | contribs) (Solution 2)

Problem

Let $x$ be the least real number greater than $1$ such that $\sin(x)= \sin(x^2)$, where the arguments are in degrees. What is $x$ rounded up to the closest integer?

$\textbf{(A) } 10 \qquad \textbf{(B) } 13 \qquad \textbf{(C) } 14 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 20$

Solution 1

The smallest $x$ to make $\sin(x) = \sin(x^2)$ would require $x=x^2$, but since $x$ needs to be greater than $1$, these solutions are not valid.

The next smallest $x$ would require $x=180-x^2$, or $x^2+x=180$.

After a bit of guessing and checking, we find that $12^2+12=156$, and $13^2+13=182$, so the solution lies between $12{ }$ and $13$, making our answer $\boxed{\textbf{(B) } 13}.$

Note: One can also solve the quadratic and estimate the radical.

~kingofpineapplz

Solution 2

For choice $\textbf{(A)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 10^\circ - \sin \left( \left( 10^2 \right)^\circ \right) \right| \\ & = \left| \sin 10^\circ - \sin 100^\circ \right| \\ & = \left| \sin 10^\circ - \sin 80^\circ \right| \\ & = \sin 80^\circ - \sin 10^\circ . \end{align*} For choice $\textbf{(B)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 13^\circ - \sin \left( \left( 13^2 \right)^\circ \right) \right| \\ & = \left| \sin 13^\circ - \sin 169^\circ \right| \\ & = \left| \sin 10^\circ - \sin 11^\circ \right| \\ & = \sin 11^\circ - \sin 10^\circ . \end{align*} For choice $\textbf{(C)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 14^\circ - \sin \left( \left( 14^2 \right)^\circ \right) \right| \\ & = \left| \sin 14^\circ - \sin 196^\circ \right| \\ & = \left| \sin 14^\circ + \sin 16^\circ \right| \\ & = \sin 14^\circ + \sin 16^\circ . \end{align*} For choice $\textbf{(D)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 19^\circ - \sin \left( \left( 19^2 \right)^\circ \right) \right| \\ & = \left| \sin 19^\circ - \sin 361^\circ \right| \\ & = \left| \sin 19^\circ - \sin 1^\circ \right| \\ & = \sin 19^\circ - \sin 1^\circ . \end{align*} For choice $\textbf{(E)},$ we have \begin{align*} \left| \sin x - \sin \left( x^2 \right) \right| & = \left| \sin 20^\circ - \sin \left( \left( 20^2 \right)^\circ \right) \right| \\ & = \left| \sin 20^\circ - \sin 400^\circ \right| \\ & = \left| \sin 20^\circ - \sin 40^\circ \right| \\ & = \sin 40^\circ - \sin 20^\circ . \end{align*} Therefore, the answer is $\boxed{\textbf{(B) }13},$ as $\sin 11^\circ - \sin 10^\circ$ is closest to $0.$

~Steven Chen (www.professorchenedu.com)

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png