2001 AMC 12 Problems/Problem 24

Revision as of 11:37, 25 August 2022 by Isabelchen (talk | contribs) (Solution 5 (Law of Sines))

Problem

In $\triangle ABC$, $\angle ABC=45^\circ$. Point $D$ is on $\overline{BC}$ so that $2\cdot BD=CD$ and $\angle DAB=15^\circ$. Find $\angle ACB.$

$\text{(A) }54^\circ \qquad \text{(B) }60^\circ \qquad \text{(C) }72^\circ \qquad \text{(D) }75^\circ \qquad \text{(E) }90^\circ$

Solution 1

[asy] unitsize(2cm); defaultpen(0.8); pair A=(0,0), B=(4,0), D=intersectionpoint( A -- (dir(15)*100), B -- (B+100*dir(135)) ), C=B+3*(D-B); pair ortho=rotate(-50)*(D-A); pair E=extension(C, ortho, A, D); draw(A--B); draw(B--C); draw(A--C); draw(C--E); draw(E--D); draw(A--D); draw(B--E, dotted);  label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NE); label("$E$",E,S); [/asy]

We start with the observation that $\angle ADB = 180^\circ - 15^\circ - 45^\circ = 120^\circ$, and $\angle ADC = 15^\circ + 45^\circ = 60^\circ$.

We can draw the height $CE$ from $C$ onto $AD$. In the triangle $CED$, we have $\frac {ED}{CD} = \cos EDC = \cos 60^\circ = \frac 12$. Hence $ED = CD/2$.

By the definition of $D$, we also have $BD=CD/2$, therefore $BD=DE$. This means that the triangle $BDE$ is isosceles, and as $\angle BDE=120^\circ$, we must have $\angle BED = \angle EBD = 30^\circ$.

Then we compute $\angle ABE = 45^\circ - 30^\circ = 15^\circ$, thus $\angle ABE = \angle BAE$ and the triangle $ABE$ is isosceles as well. Hence $AE=BE$.

Now we can note that $\angle DCE = 180^\circ - 90^\circ - 60^\circ = 30^\circ$, hence also the triangle $EBC$ is isosceles and we have $BE=CE$.

Combining the previous two observations we get that $AE=EC$, and as $\angle AEC=90^\circ$, this means that $\angle CAE = \angle ACE = 45^\circ$.

Finally, we get $\angle ACB = \angle ACE + \angle ECD = 45^\circ + 30^\circ = 75^\circ \boxed{D}$.

Solution 2

Draw a good diagram! Now, let's call $BD=t$, so $DC=2t$. Given the rather nice angles of $\angle ABD = 45^\circ$ and $\angle ADC = 60^\circ$ as you can see, let's do trig. Drop an altitude from $A$ to $BC$; call this point $H$. We realize that there is no specific factor of $t$ we can call this just yet, so let $AH=kt$. Notice that in $\triangle{ABH}$ we get $BH=kt$. Using the 60-degree angle in $\triangle{ADH}$, we obtain $DH=\frac{\sqrt{3}}{3}kt$. The comparable ratio is that $BH-DH=t$. If we involve our $k$, we get:

$kt(\frac{3}{3}-\frac{\sqrt{3}}{3})=t$. Eliminating $t$ and removing radicals from the denominator, we get $k=\frac{3+\sqrt{3}}{2}$. From there, one can easily obtain $HC=3t-kt=\frac{3-\sqrt{3}}{2}t$. Now we finally have a desired ratio. Since $\tan\angle ACH = 2+\sqrt{3}$ upon calculation, we know that $\angle ACH$ can be simplified. Indeed, if you know that $\tan(75)=2+\sqrt{3}$ or even take a minute or two to work out the sine and cosine using $\sin(x)^2+\cos(x)^2=1$, and perhaps the half- or double-angle formulas, you get $\boxed{75^\circ}$.

Solution 3

Without loss of generality, we can assume that $BD = 1$ and $CD = 2$. As above, we are able to find that $\angle ADC = 60^\circ$ and $\angle ADB = 120^\circ$.

Using Law of Sines on triangle $ADB$, we find that \[\frac{1}{\sin15^\circ} = \frac{AD}{\sin 45^\circ} = \frac{AB}{\sin 120^\circ}.\] Since we know that \[\sin 15^\circ = \frac{\sqrt{6}-\sqrt{2}}{4},\] \[\sin 45^\circ = \frac{\sqrt{2}}{2},\] \[\sin 120^\circ = \frac{\sqrt{3}}{2},\] we can compute $AD$ to equal $1+\sqrt{3}$ and $AB$ to be $\frac{3\sqrt{2}+\sqrt{6}}{2}$.

Next, we apply Law of Cosines to triangle $ADC$ to see that \[AC^2 = (1+\sqrt{3})^2 + 2^2 - (2)(1+\sqrt{3})(2)(\cos 60^\circ).\] Simplifying the right side, we get $AC^2 = 6$, so $AC = \sqrt{6}$.

Now, we apply Law of Sines to triangle $ABC$ to see that \[\frac{\sqrt{6}}{\sin 45^\circ} = \frac{\frac{3\sqrt{2}+\sqrt{6}}{2}}{\sin ACB}.\] After rearranging and noting that $\sin 45^\circ = \frac{\sqrt{2}}{2}$, we get \[\sin ACB = \frac{\sqrt{6}+3\sqrt{2}}{4\sqrt{3}}.\]

Dividing the right side by $\sqrt{3}$, we see that \[\sin ACB = \frac{\sqrt{6}+\sqrt{2}}{4},\] so $\angle ACB$ is either $75^\circ$ or $105^\circ$. Since $105^\circ$ is not a choice, we know $\angle ACB = \boxed{75^\circ}$.

Note that we can also confirm that $\angle ACB \neq 105^\circ$ by computing $\angle CAB$ with Law of Sines.

Solution 4(FAST)

Note that $\angle{ADB} = 120$ and $\angle{ADC} = 60$. Seeing these angles makes us think of 30-60-90 triangles. Let $E$ be the foot of the altitude from $A$ to $BC$. This means $\angle{DAE} = 30$ and $\angle{BAE} = 45$. Let $BD = x$ and $DE = y$. This means $AE = y\sqrt{3}$ and since $AE = BE$ we know that $x + y = y\sqrt{3}$. This means $y = \frac{x(\sqrt{3} + 1)}{2}$. This gives $CE = \frac{4x - x(\sqrt{3} + 1)}{2}$. Note that $\tan{\angle{ACE}} = \frac{AE}{CE} = 2 + \sqrt{3}$. Looking that the answer options we see that $\tan{75^\circ} = 2 + \sqrt{3}$. This means the answer is $D$. ~coolmath_2018

Solution 5 (Law of Sines)

$\angle ADB = 120^\circ$, $\angle ADC = 60^\circ$, $\angle DAB = 15^\circ$, let $\angle ACB = \theta$, $\angle DAC = 120^\circ - \theta$

By the Law of Sines, we have $\frac{CD}{\sin(120^\circ - \theta)} = \frac{AD}{\sin \theta}$

$\space$ $\frac{BD}{\sin15^\circ} = \frac{AD}{\sin45^\circ}$

$\frac{BD}{CD} \cdot \frac{\sin(120^\circ - \theta)}{\sin15^\circ} = \frac{\sin \theta}{\sin45^\circ}$

$\frac{1}{2} \cdot \frac{\sin(120^\circ - \theta)}{\sin15^\circ} = \frac{\sin \theta}{\sin45^\circ}$

By the Triple-angle Identities, $\sin 45^\circ = 3\sin15^\circ -4\sin^3 15^\circ$

$\frac{\sin(120^\circ - \theta)}{2} = \frac{\sin \theta}{3\ -4\sin^2 15^\circ}$

$\sin^2 15^\circ = \frac{1 - \cos 30^\circ}{2} = \frac{1 - \frac{\sqrt{3}}{2}}{2} = \frac{2 - \sqrt{3}}{4}$

$\frac{\sin(120^\circ - \theta)}{2} = \frac{\sin \theta}{3 - 4 \cdot \frac{2 - \sqrt{3}}{4}} = \frac{\sin \theta}{1+\sqrt{3}}$

$\frac{\sin \theta}{\sin(120^\circ - \theta)} = \frac{1+\sqrt{3}}{2}$

$\sin(120^\circ - \theta) = \sin120^\circ \cos\theta - \sin\theta \cos120^\circ = \frac{\sqrt{3}}{2} \cdot \cos\theta + \frac{1}{2} \cdot \sin\theta$,so $\frac{\sin \theta}{\frac{\sqrt{3}}{2} \cdot \cos\theta + \frac{1}{2} \cdot \sin\theta} = \frac{1+\sqrt{3}}{2}$

$\frac{\sqrt{3} \cdot \cos\theta + \sin\theta}{2 \sin \theta} = \frac{2}{1+\sqrt{3}}$

$\frac{\sqrt{3}}{2} \cdot \cot \theta = \frac{2}{1+\sqrt{3}} - \frac{1}{2} = \frac{3 - \sqrt{3}}{2 + 2 \sqrt{3}}$

$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$

Suppose $\cos \theta = k(\sqrt{3} - 1)$, and $\sin \theta = k(\sqrt{3} + 1)$

$\sin^2 \theta + \cos^2 \theta = 1$, $k^2(\sqrt{3} + 1)^2 + k^2(\sqrt{3} - 1)^2 = 8k^2 = 1$, $k = \frac{1}{2 \sqrt{2}}$

$\sin \theta = \frac{\sqrt{3} + 1}{2 \sqrt{2}}$, $\cos \theta = \frac{\sqrt{3} - 1}{2 \sqrt{2}}$

$\sin 2 \theta = 2 \cdot \frac{\sqrt{3} + 1}{2 \sqrt{2}} \cdot \frac{\sqrt{3} - 1}{2 \sqrt{2}} = \frac{1}{2}$

Two possible values of $2 \theta$ are $150^\circ$ and $30^\circ$. However we can rule out $30^\circ$ because $\cos 15^\circ$ is positive, while $\cos \theta$ is negative.

Therefore $2 \theta = 150^\circ$, $\angle ACB = \boxed{\textbf{(D) } 75^\circ }$

~isabelchen

See Also

2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png