2022 AMC 10B Problems/Problem 5

Revision as of 19:41, 19 November 2022 by Thestudyofeverything (talk | contribs) (Solution 2 (Brute Force))

Problem

What is the value of \[\frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}}?\] $\textbf{(A)}\ \sqrt3 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ \sqrt{15} \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{105}$

Video Solution 1

https://youtu.be/N7hGuy0MWOQ

~Education, the Study of Everything


Solution 1

We apply the difference of squares to the denominator, and then regroup factors: \begin{align*} \frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{7^2}\right)}} &= \frac{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}{\sqrt{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}\cdot\sqrt{\left(1-\frac13\right)\left(1-\frac15\right)\left(1-\frac17\right)}} \\ &= \frac{\sqrt{\left(1+\frac13\right)\left(1+\frac15\right)\left(1+\frac17\right)}}{\sqrt{\left(1-\frac13\right)\left(1-\frac15\right)\left(1-\frac17\right)}} \\ &= \frac{\sqrt{\frac43\cdot\frac65\cdot\frac87}}{\sqrt{\frac23\cdot\frac45\cdot\frac67}} \\ &= \frac{\sqrt{4\cdot6\cdot8}}{\sqrt{2\cdot4\cdot6}} \\ &= \frac{\sqrt8}{\sqrt2} \\ &= \boxed{\textbf{(B)}\ 2}. \end{align*} ~MRENTHUSIASM

Solution 2 (Brute Force)

Since these numbers are fairly small, we can use brute force as follows: \[\frac{(1+\frac{1}{3})(1+\frac{1}{5})(1+\frac{1}{7})}{\sqrt{(1-\frac{1}{3^2})(1-\frac{1}{5^2})(1-\frac{1}{7^2})}} =\frac{\frac{4}{3}\cdot\frac{6}{5}\cdot\frac{8}{7}}{\sqrt{\frac{8}{9}\cdot\frac{24}{25}\cdot\frac{48}{49}}} =\frac{\frac{4\cdot6\cdot8}{3\cdot5\cdot7}}{\sqrt{\frac{(2^3)(2^3\cdot3^1)(2^4\cdot3^1)}{(3^2)(5^2)(7^2)}}} =\frac{\frac{64}{35}}{\frac{96}{105}}=\frac{64}{35}\cdot\frac{105}{96}=\boxed{\textbf{(B)}\ 2}.\] ~not_slay

Video Solution 1

https://youtu.be/N7hGuy0MWOQ

~Education, the Study of Everything

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png