2009 AMC 10B Problems/Problem 16

Revision as of 10:54, 17 June 2023 by Azc1027 (talk | contribs) (Solution 3)

Problem

Points $A$ and $C$ lie on a circle centered at $O$, each of $\overline{BA}$ and $\overline{BC}$ are tangent to the circle, and $\triangle ABC$ is equilateral. The circle intersects $\overline{BO}$ at $D$. What is $\frac{BD}{BO}$?

$\text{(A) } \frac {\sqrt2}{3} \qquad \text{(B) } \frac {1}{2} \qquad \text{(C) } \frac {\sqrt3}{3} \qquad \text{(D) } \frac {\sqrt2}{2} \qquad \text{(E) } \frac {\sqrt3}{2}$

Solution

Solution 1

[asy] unitsize(1.5cm); defaultpen(0.8); pair B=(0,0), A=(3,0), C=3*dir(60), O=intersectionpoint( C -- (C+3*dir(-30)), A -- (A+3*dir(90)) ); pair D=intersectionpoint(B--O, circle(O,length(A-O))); draw(circle(O,length(A-O))); draw(A--B--C--O--A); draw(B--O); draw(rightanglemark(B,A,O)); draw(rightanglemark(B,C,O)); draw(A--C, dashed ); label("$B$",B,SW); label("$A$",A,S); label("$C$",C,NW); label("$O$",O,NE); label("$D$",D,(S+SSW)); [/asy]

As $\triangle ABC$ is equilateral, we have $\angle BAC = \angle BCA = 60^\circ$, hence $\angle OAC = \angle OCA = 30^\circ$. Then $\angle AOC = 120^\circ$, and from symmetry we have $\angle AOB = \angle COB = 60^\circ$. Thus, this gives us $\angle ABO = \angle CBO = 30^\circ$.

We know that $DO = AO$, as $D$ lies on the circle. From $\triangle ABO$ we also have $AO = BO \sin 30^\circ = \frac{BO}2$, Hence $DO = \frac{BO}2$, therefore $BD = BO - DO = \frac{BO}2$, and $\frac{BD}{BO} = \boxed{\frac 12 \Longrightarrow B}$.

Solution 2

[asy] unitsize(1.5cm); defaultpen(0.8); pair B=(0,0), A=(3,0), C=3*dir(60), O=intersectionpoint( C -- (C+3*dir(-30)), A -- (A+3*dir(90)) ); pair D=intersectionpoint(B--O, circle(O,length(A-O))); draw(circle(O,length(A-O))); draw(A--B--C--O--A); draw(B--O); draw(rightanglemark(B,A,O)); draw(rightanglemark(B,C,O)); draw(A--C--D--A, dashed ); pair Sp = intersectionpoint(D--O,A--C); label("$B$",B,SW); label("$A$",A,S); label("$C$",C,NW); label("$O$",O,NE); label("$D$",D,(S+SSW)); label("$S$",Sp,(S+SSW)); [/asy]

As in the previous solution, we find out that $\angle AOB = \angle COB = 60^\circ$. Hence $\triangle AOD$ and $\triangle COD$ are both equilateral.

We then have $\angle SCD = \angle SAD = 30^\circ$, hence $D$ is the incenter of $\triangle ABC$, and as $\triangle ABC$ is equilateral, $D$ is also its centroid. Hence $2 \cdot SD = BD$, and as $SD = SO$, we have $2\cdot SD = SD + SO = OD$, therefore $BD=OD$, and as before we conclude that $\frac{BD}{BO} = \boxed{\frac 12}$.

Solution 3

$\triangle BAO\cong\triangle BCO$ by SSS congruence, so $\angle ABO = \angle CBO = \frac{60}{2} = 30 \cdot$. Since $BA$ is tangent to the circle, it is perpendicular to $AO$. This means that $\triangle BAO$ is a 30-60-90 triangle. The ratio of the side-lengths of a 30-60-90 triangle is $1:\sqrt3:2$, so $BO=2$. $BD = BO-DO$. Since $DO$ is the radius of the circle, $DO=1$ and $BD = 2-1=1$. Hence, $\frac{BD}{BO} = \frac{1}{2}$, and the answer is $\boxed{\textbf{(B) } \frac{1}{2}}$ ~azc1027

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png