2013 AMC 8 Problems/Problem 23

Revision as of 08:56, 16 July 2024 by Forest3g (talk | contribs) (Video Solution for Problems 21-25)

Problem

Angle $ABC$ of $\triangle ABC$ is a right angle. The sides of $\triangle ABC$ are the diameters of semicircles as shown. The area of the semicircle on $\overline{AB}$ equals $8\pi$, and the arc of the semicircle on $\overline{AC}$ has length $8.5\pi$. What is the radius of the semicircle on $\overline{BC}$? [asy] import graph; pair A,B,C; A=(0,8); B=(0,0); C=(15,0); draw((0,8)..(-4,4)..(0,0)--(0,8)); draw((0,0)..(7.5,-7.5)..(15,0)--(0,0)); real theta = aTan(8/15); draw(arc((15/2,4),17/2,-theta,180-theta)); draw((0,8)--(15,0)); dot(A); dot(B); dot(C); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE);[/asy]

$\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9$

Video Solution

https://youtu.be/crR3uNwKjk0 ~savannahsolver

Solution 1

If the semicircle on $\overline{AB}$ were a full circle, the area would be $16\pi$.

$\pi r^2=16 \pi \Rightarrow r^2=16 \Rightarrow r=+4$, therefore the diameter of the first circle is $8$.

The arc of the largest semicircle is $8.5 \pi$, so if it were a full circle, the circumference would be $17 \pi$. So the $\text{diameter}=17$.

By the Pythagorean theorem, the other side has length $15$, so the radius is $\boxed{\textbf{(B)}\ 7.5}$

Solution 2

We go as in Solution 1, finding the diameter of the circle on $\overline{AC}$ and $\overline{AB}$. Then, an extended version of the theorem says that the sum of the semicircles on the left is equal to the biggest one, so the area of the largest is $\frac{289\pi}{8}$, and the middle one is $\frac{289\pi}{8}-\frac{64\pi}{8}=\frac{225\pi}{8}$, so the radius is $\frac{15}{2}=\boxed{\textbf{(B)}\ 7.5}$.

Video Solution by OmegaLearn

https://youtu.be/abSgjn4Qs34?t=2584

~ pi_is_3.14


See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png