1989 AIME Problems/Problem 12

Revision as of 22:17, 26 January 2008 by Cmac89 (talk | contribs) (Solution: extra detail)

Problem

Let $ABCD^{}_{}$ be a tetrahedron with $AB=41^{}_{}$, $AC=7^{}_{}$, $AD=18^{}_{}$, $BC=36^{}_{}$, $BD=27^{}_{}$, and $CD=13^{}_{}$, as shown in the figure. Let $d^{}_{}$ be the distance between the midpoints of edges $AB^{}_{}$ and $CD^{}_{}$. Find $d^{2}_{}$.

AIME 1989 Problem 12.png

Solution

Call the midpoint of $\overline{AB}$ $M$ and the midpoint of $\overline{CD}$ $N$. $d$ is the median of triangle $\triangle CDM$. The formula for the length of a median is $m=\sqrt{\frac{2a^2+2b^2-c^2}{4}}$, where $a$, $b$, and $c$ are the side lengths of triangle, and $c$ is the side that is bisected by median $m$. The formula is a direct result of the Law of Cosines applied twice with the angles formed by the median (Stewart's Theorem).

We first find $CM$, which is the median of $\triangle CAB$.

\[CM=\sqrt{\frac{98+2592-1681}{4}}=\frac{\sqrt{1009}}{2}\]

Now we must find $DM$, which is the median of $\triangle DAB$.

\[DM=\frac{\sqrt{425}}{2}\]

Now that we know the sides of $\triangle CDM$, we proceed to find the length of $d$.

\[d=\frac{\sqrt{548}}{2} \Longrightarrow d^2=\frac{548}{4}=\boxed{137}\]

See also

1989 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions