2000 AMC 12 Problems/Problem 24
Problem
If circular arcs and have centers at and , respectively, then there exists a circle tangent to both and , and to . If the length of is , then the circumference of the circle is
Solution
Since are all radii, it follows that is an equilateral triangle. Draw the circle with center and radius . Then let be the point of tangency of the two circles, and be the intersection of the smaller circle and . Let be the intersection of the smaller circle and . Also define the radii (note that is a diameter of the smaller circle, as is the point of tangency of both circles, the radii of a circle is perpendicular to the tangent, hence the two centers of the circle are collinear with each other and ).
By the Power of a Point Theorem, . Since , then . Since is equilateral, , and so $\stackrel{\frown}{BC} = 12 = \frac{60}{360} 2\pi\r_1 \Longrightarrow r_1 = \frac{36}{\pi}$ (Error compiling LaTeX. Unknown error_msg). Thus and the circumference of the circle is .
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |