2015 AMC 12B Problems/Problem 8
Contents
Problem
What is the value of ?
Solution 1
\begin{align*}(625^{\log_5 2015})^\frac{1}{4} &= ((5^4)^{\log_5 2015})^\frac{1}{4}\\ &= (5^{4 \cdot \log_5 2015})^\frac{1}{4}\\
&= (5^{\log_5 2015 \cdot 4})^\frac{1}{4}\\ &= ((5^{\log_5 2015})^4)^\frac{1}{4}\\ &= (2015^4)^\frac{1}{4}\\ &= \boxed{\textbf{(D)}\; 2015}\\
\end{align*}
Solution 2
We can rewrite as as . Thus,
Solution 3
~ cxsmi
Solution 4 (Last resort)
We note that the year number is just , so just guess .
~xHypotenuse
Easily the best solution
Video Solution by OmegaLearn
https://youtu.be/RdIIEhsbZKw?t=738
~ pi_is_3.14
See Also
2015 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.