1997 AHSME Problems/Problem 4

Revision as of 16:02, 25 December 2011 by Sindennisz (talk | contribs) (Solution 1)

Problem

If $a$ is $50\%$ larger than $c$, and $b$ is $25\%$ larger than $c$, then $a$ is what percent larger than $b$?

$\mathrm{(A)\ } 20\% \qquad \mathrm{(B) \ }25\% \qquad \mathrm{(C) \  } 50\% \qquad \mathrm{(D) \  } 100\% \qquad \mathrm{(E) \  }200\%$

Solution

Solution 1

Translating each sentence into an equation, $a = 1.5c$ and $b = 1.25c$.

We want a relationship between $a$ and $b$. Dividing the second equation into the first will cancel the $c$, so we try that and get:

$\frac{a}{b} = \frac{1.5}{1.25}$

$\frac{a}{b} = \frac{150}{125}$

$\frac{a}{b} = \frac{6}{5}$

$a = 1.2b$

In this case, $a$ is $1.2 - 1 = 0.2 = 20\%$ bigger than $b$, and the answer is $\boxed{A}$.

Solution 2

Arbitrarily assign a value to one of the variables. Since $c$ is the smallest variable, let $c = 100$.

If $a$ is $50\%$ larger than $c$, then $a = 150$.

If $b$ is $25\%$ larger than $c$, then $b = 125$.

We see that $\frac{a}{b} = \frac{150}{125} = 1.2$ So, $a$ is $20\%$ bigger than $b$, and the answer is $\boxed{B}$.


See also

1997 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions