1984 AHSME Problems/Problem 1

Revision as of 11:48, 5 July 2013 by Nathan wailes (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

$\frac{1000^2}{252^2-248^2}$ equals

$\mathrm{(A) \  }62,500 \qquad \mathrm{(B) \  }1,000 \qquad \mathrm{(C) \  } 500\qquad \mathrm{(D) \  }250 \qquad \mathrm{(E) \  } \frac{1}{2}$

Solution

We can use difference of squares to factor the denominator, yielding:

$\frac{1000^2}{252^2-248^2}=\frac{1000^2}{(252-248)(252+248)}=\frac{1000^2}{(4)(500)}=\frac{1000^2}{2000}$.

We see that the $1000$ in the denominator cancels with one of the $1000$s in the numerator, yielding $500, \boxed{\text{C}}$.

See Also

1984 AHSME (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png