2009 USAMO Problems

Revision as of 17:16, 17 September 2012 by 1=2 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Day 1

Problem 1

Given circles $\omega_1$ and $\omega_2$ intersecting at points $X$ and $Y$, let $\ell_1$ be a line through the center of $\omega_1$ intersecting $\omega_2$ at points $P$ and $Q$ and let $\ell_2$ be a line through the center of $\omega_2$ intersecting $\omega_1$ at points $R$ and $S$. Prove that if $P, Q, R$ and $S$ lie on a circle then the center of this circle lies on line $XY$.

Solution

Problem 2

Let $n$ be a positive integer. Determine the size of the largest subset of $\{ - n, - n + 1, \ldots , n - 1, n\}$ which does not contain three elements $a, b, c$ (not necessarily distinct) satisfying $a + b + c = 0$.

Solution

Problem 3

We define a chessboard polygon to be a polygon whose sides are situated along lines of the form $x = a$ or $y = b$, where $a$ and $b$ are integers. These lines divide the interior into unit squares, which are shaded alternately grey and white so that adjacent squares have different colors. To tile a chessboard polygon by dominoes is to exactly cover the polygon by non-overlapping $1 \times 2$ rectangles. Finally, a tasteful tiling is one which avoids the two configurations of dominoes shown on the left below. Two tilings of a $3 \times 4$ rectangle are shown; the first one is tasteful, while the second is not, due to the vertical dominoes in the upper right corner.

[asy] size(400); pathpen = linewidth(2.5); void chessboard(int a, int b, pair P){   for(int i = 0; i < a; ++i) for(int j = 0; j < b; ++j)    if((i+j) % 2 == 1) fill(shift(P.x+i,P.y+j)*unitsquare,rgb(0.6,0.6,0.6));   D(P--P+(a,0)--P+(a,b)--P+(0,b)--cycle); } chessboard(2,2,(2.5,0));fill(unitsquare,rgb(0.6,0.6,0.6));fill(shift(1,1)*unitsquare,rgb(0.6,0.6,0.6)); chessboard(4,3,(6,0)); chessboard(4,3,(11,0)); MP("\mathrm{Distasteful\ tilings}",(2.25,3),fontsize(12));   /* draw lines */ D((0,0)--(2,0)--(2,2)--(0,2)--cycle); D((1,0)--(1,2)); D((2.5,1)--(4.5,1)); D((7,0)--(7,2)--(6,2)--(10,2)--(9,2)--(9,0)--(9,1)--(7,1)); D((8,2)--(8,3)); D((12,0)--(12,2)--(11,2)--(13,2)); D((13,1)--(15,1)--(14,1)--(14,3)); D((13,0)--(13,3)); [/asy]

a) Prove that if a chessboard polygon can be tiled by dominoes, then it can be done so tastefully.

b) Prove that such a tasteful tiling is unique.

Solution

Day 2

Problem 4

For $n \ge 2$ let $a_1$, $a_2$, ..., $a_n$ be positive real numbers such that

$(a_1+a_2+ ... +a_n)\left( {1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n} \right) \le \left(n+ {1 \over 2} \right) ^2$

Prove that $\text{max}\, (a_1, a_2, ... ,a_n) \le  4\, \text{min}\, (a_1, a_2, ... , a_n)$.

Solution

Problem 5

Trapezoid $ABCD$, with $\overline{AB}||\overline{CD}$, is inscribed in circle $\omega$ and point $G$ lies inside triangle $BCD$. Rays $AG$ and $BG$ meet $\omega$ again at points $P$ and $Q$, respectively. Let the line through $G$ parallel to $\overline{AB}$ intersect $\overline{BD}$ and $\overline{BC}$ at points $R$ and $S$, respectively. Prove that quadrilateral $PQRS$ is cyclic if and only if $\overline{BG}$ bisects $\angle CBD$.

Solution

Problem 6

Let $s_1, s_2, s_3, \ldots$ be an infinite, nonconstant sequence of rational numbers, meaning it is not the case that $s_1 = s_2 = s_3 = \cdots.$ Suppose that $t_1, t_2, t_3, \ldots$ is also an infinite, nonconstant sequence of rational numbers with the property that $(s_i - s_j)(t_i - t_j)$ is an integer for all $i$ and $j$. Prove that there exists a rational number $r$ such that $(s_i - s_j)r$ and $(t_i - t_j)/r$ are integers for all $i$ and $j$.

Solution

See Also

2009 USAMO (ProblemsResources)
Preceded by
2008 USAMO
Followed by
2010 USAMO
1 2 3 4 5 6
All USAMO Problems and Solutions