2013 AMC 12A Problems/Problem 21

Revision as of 17:53, 22 February 2013 by Aplus95 (talk | contribs)

Problem

Consider $A = \log (2013 + \log (2012 + \log (2011 + \log (\cdots + \log (3 + \log 2) \cdots ))))$. Which of the following intervals contains $A$?

$\textbf{(A)} \ (\log 2016, \log 2017)$ $\textbf{(B)} \ (\log 2017, \log 2018)$ $\textbf{(C)} \ (\log 2018, \log 2019)$ $\textbf{(D)} \ (\log 2019, \log 2020)$ $\textbf{(E)} \ (\log 2020, \log 2021)$


Solution

Let $f(x) = \log(x + f(x-1))$ and $f(2) = log(2)$, and from the problem description, $A = f(2013)$

We can reason out an approximation, by ignoring the $f(x-1)$:

$f_{0}(x) \approx \log x$

And a better approximation, by plugging in our first approximation for $f(x-1)$ in our original definition for $f(x)$:

$f_{1}(x) \approx \log(x + \log(x-1))$

And an even better approximation:

$f_{2}(x) \approx \log(x + \log(x-1 + \log(x-2)))$

Continuing this pattern, obviously, will eventually terminate at $f_{x-1}(x)$, in other words our original definition of $f(x)$.

However, at $x = 2013$, going further than $f_{1}(x)$ will not distinguish between our answer choices. $\log(2012 + \log(2011))$ is nearly indistinguishable from $\log(2012)$.

So we take $f_{1}(x)$ and plug in.

$f(2013) \approx \log(2013 + \log 2012)$

Since $1000 < 2012 < 10000$, we know $3 < log(2012) < 4$. This gives us our answer range:

$\log 2016 < \log(2013 + \log 2012) < \log(2017)$

$(\log 2016, \log 2017)$

See Also

2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions